cancer

Cannabis (Cannabis sativa/indica)

cannabis-leaf.jpg

Cannabis Overview

Cannabis is well known for its psychoactive effects, causing temporary changes in visual and auditory perception.

The cannabis plant is also a rich source of medicinal compounds. Cannabinoids related to THC exert medicinal action through the endocannabinoid system — a critical component of homeostasis.

Many of these cannabinoids aren't psychoactive, and wont produce the 'high' associated with the plant in their isolated forms.

Compounds like CBD, have become especially popular as a supplement recently for its broad medicinal benefits.

There are plenty of uses for cannabis — however, product selection, strain choice, and cannabinoid profiles make a big difference in the effects produced by the plant. It's important to use the right type of cannabis for the job.

+ Page Index

+ Indications

  • Anorexia
  • Cancer
  • Crohn's disease
  • Dystonia
  • Epilepsy
  • General anxiety disorder
  • Glaucoma
  • Gout
  • Insomnia
  • Menstrual cramping
  • Multiple Sclerosis
  • Neuropathic pain
  • Osteoarthritis
  • Rheumatoid Arthritis
  • Schizophrenia (Caution)
  • Social anxiety disorder
  • Substance abuse/addiction
  • Ulcerative colitis

+ Contraindications

  • Only use cannabis medicinally following the direction of a qualified medical practitioner.
  • Caution with anxious or depression.
  • May worsen symptoms of psychosis
  • Avoid use alongside medications unless first discussing with your doctor.

+ Potential Side-Effects

  • Apathy (long-term use)
  • Bronchitis (smoking)
  • Cough (smoking)
  • Depression
  • Dizziness
  • Dry eyes
  • Dry mouth
  • Eye reddening
  • Fatigue
  • Hallucinations
  • Headache
  • Heart palpitations
  • Hypertension/Hypotension
  • Increased appetite
  • Lightheadedness
  • Menstrual changes
  • Nausea/vomiting
  • Numbness
  • Paranoia
  • Tachycardia

Herbal Actions:

  • Sedative/Stimulant
  • Anti-emetic
  • Anti-spasmodic
  • Anti-convulsant
  • Analgesic
  • Antinflammatory
  • Appetite Suppressant/Stimulant
 

What is Cannabis Used For?

Using cannabis as medicine poses challenges due to the large variety of effects each cannabinoid possesses. Different cannabinoid and terpene ratios can produce different effect profiles.

The plant has many claimed benefits, and though a lot of them can be validated, it's not a miracle plant.

Cannabis is especially reliable for a few key symptoms:

  • Lowering various forms of inflammation
  • Improving microbiome diversity (through CB2 receptor activity)
  • Reducing nervous excitability
  • Reducing convulsions
  • Improving sleep onset and maintenance
  • Lowering pain

Using cannabis as medicine should be attempted with caution due to the degree of variability the plant produces in terms of effect profile. What this means is that some cannabis extracts will make symptoms like anxiety worse, while others can dramatically improve it.

Choosing the right strain or extract is of the utmost importance when using cannabis as medicine.

The effects of cannabis can be contradictory:

  • It's both a stimulant and a sedative
  • It increases appetite, and suppresses it
  • It increases immune activity, and suppresses inflamamtion

These effects all contradict themselves in most cases. The reason this happens is because the cannabinoids work through a regulatory pathway (endocannabinoid system) rather than on a particular organ function.

It's similar to how adaptogens like ginseng, ashwagandha, or reishi produce often contradictory or bidirectional results.

 

Technical Details

Weekly Dose

Part Used

  • Leaves, flowers, seeds

Family Name

  • Cannabacea

Distribution

  • Worldwide

Common Names

  • Cannabis
  • Marijuana
  • Hemp
  • Mary Jane
  • Herb

Pregnancy

  • Avoid use while pregnant and nursing.

Duration of Use

  • Long-term use acceptable. Recommended to take breaks periodically.

CYP450

  • CYP2C9
  • CYP3A4
 

Botanical Information

Cannabis plants are members of the Cannabacea family. This small family comprises only 11 different genuses, and about 170 species.

Some common members of the family are hops (Humulus spp.) and celtis (Celtis spp.). The celtis genus contains the largest collection of species by far, with over 100 different species. Cannabis and Humulus are the closest related genus' in the group by far.

female-cannabis-sativa.jpg

There are three species of cannabis:

1. Cannabis sativa

Cannabis sativa is a tall, fibrous plant. It's high in cannabinoids, terpenes, and other phytochemicals — giving it many uses medicinally.

Cannabis sativa is the most commonly cultivated species. There are hundreds, if not thousands of different phenotypes of this species — the most important being hemp — which is a non-psychoactive, high fiber plant valued as both a health supplement and textile. It's also used for food (seeds), and to make biodeisel.

There are also Cannabis sativa strains high in the psychoactive component — THC — which make it popular as both medicine and recreational intoxicant.

2. Cannabis indica

Cannabis indica grows as s shorter, bushier plant. It's hgiher in THC, and there are few low-THC phenotypes available for this plant.

This species of cannabis is most often used recreationally.

3. Cannabis ruderalis

Cannabis ruderalis is a small, herbaceus plant more closely related to Cannabis sativa than Cannabis indica. It's low in cannabinoids, and terpenes, as well as fiber — limiting its value to humans.

This species has the unique ability to initiate flower production irrelevant to day length. Plant breeders have started mixing the plant with other species to gain these benefits. This makes cultivation easier in areas where day length is too short or too long for optimal cannabis cultivation.

 

Phytochemistry

There are 421 compounds in the cannabis plant [1], at least 66 of these are cannabinoids — some sources report as many as 112.

The top 6 cannabinoids in the plant (CBD, CBG, CNN, THC, THCV, and CBC), account for the vast majority of the cannabinoid profile.

The phenotype of the cannabis used is the primary determining factor for the cannabinoid profile of each plant.

Hemp plants for example, contain much higher levels of CBD, and lower levels of THC. Marijuana strains are the opposite, contianing high THC, and lower CBD.

Depending on the strain, this can vary dramatically — and you can find almost any combination of cannabinoid possible.

comparing-CBD-from-hemp-and-marijuana.jpg
 

The Cannabinoids:

Cannabinoids are a class of phytochemical compounds resembling the structure of our naturally occurring ecosanoid endocannabinoids; anandamide, and 2-AG. There are roughly 66 of these compounds in the cannabis plant, and a few found in other species of plants as well — such as helichrysum and echinacea.

Although the cannabinoids are very similar, their binding activity varies a lot [14]. Some bind to CB1 receptors (located primarily in the central nervous system), others bind to CB2 receptors (found primarily in immune tissue). Some cannabinoids will even bind to both, or work by increasing the concentrations of naturally occurring endocannabinoids instead.

Due to the wide range of variability between each cannabinoid, it’s useful to go over them in greater detail individually.

cbc-cannabichromene-header.jpg
CBC.jpg

1. CBC

Cannabichromene

CBC is the third most abundant cannabinoid in the cannabis plant.

It’s non-psychoactive.

CBC is far less studied than the two preceding cannabinoids CBD, and THC, though early research is starting to suggest it’s even better for treating conditions like anxiety than the famed CBD.

CBC content can be increased in the cannabis plant by inducing light-stress on the plant [5].

CBC Medicinal Actions

  • Antidepressant

  • Mild sedative

Receptors Affected

  • Vanilloid receptor agonist (TRPV3 and TRPV4) [4]

 
CBD-cannabidiol-header.jpg
CBD.jpg

2. CBD

Cannabidiol

In many cases, CBD is the most abundant cannabinoid. Only selectively bred cannabis strains will have higher THC concentrations than CBD.

CBD is famed for many reasons. It offers a wide range of medicinal benefits, and has been well-studied and validated over the past two decades.

CBD oils, e-liquids, and edibles have become highly popular in recent years as more of this research is being released and translated for the general public.

CBD Medicinal Actions

  • Antinflammatory

  • Mild appetite suppressant

  • Lowers stress

  • Adaptogenic

  • Mild sedative

  • Anti-emetic

Receptors Affected

  • Adenosine (A2a) reuptake inhibitor [6]

  • Vanilloid pain receptors (TRPV1, TRPV2, TRPV3) [7]

  • 5HT1A receptor agonist (serotonin receptor) [6]

  • FAAH (–) [6, 7]

  • PPARγ nuclear receptor (+) [48]

  • Mg2+‐ATPase (−) [11]

  • Arylalkylamine N‐acetyltransferase (−) [44]

  • Indoleamine‐2,3‐dioxygenase (−) [45]

  • 15‐lipoxygenase (−) [46]

  • Phospholipase A2 (+) [11]

  • Glutathione peroxidase (+) [47]

  • Glutathione reductase (+) [47]

  • 5‐lipoxygenase (−) [46]

Metabolism

  • CYP1A1 (−) [40]

  • CYP1A2 & CYP1B1 (−) [40]

  • CYP2B6 (−) [41]

  • CYP2D6 (−) [42]

  • CYP3A5 (−) [43]

 
cbg-cannabigerol-header.jpg
CBG.jpg

3. CBG

Cannabigerol

CBG is an early precursor for many of the other cannabinoids including THC.

Plants harvested early will be high in this compound.

Many users report that strains high in CBG are less likely to cause anxiety, and are good for people experiencing acute stress.

This is likely due to its role in blocking the serotonergic effects of THC through the 5-HT1A serotonin receptors [9].

CBG Medicinal Actions

  • Anti-anxiety

  • Adaptogenic

  • Mild sedative

Receptors Affected

  • A2-adrenoceptor antagonist [9]

  • CB1 and CB2 receptors agonist [9]

  • 5-HT1A receptors antagonist (serotonin receptor) [9]

  • Vanilloid receptor agonist (TRPA1) [8]

  • TRPM8 receptor antagonist [8]

 
cbn-cannabinol-header.jpg
CBN.jpg

4. CBN

Cannabinol

CBN is made from THC. As THC content breaks down with time, or heat, CBN levels increase overall.

Older harvested plants that have gone past their window of ripeness will be much higher in CBN.

It’s mostly non-psychoactive but may have some mild psychoactivity in some people.

Products or strains high in CBN will produce more of a heavy feeling and are best used for treating conditions like insomnia or anxiety.

This cannabinoid is potentially the most sedative of the group.

CBN Medicinal Actions

  • Sedative

  • Anti-anxiety

  • Appetite stimulant

Receptors Affected

  • CB1 receptor agonist [10].

Metabolism

  • CYP2C9

 
thc-tetrahydrocannabinol-header.jpg
THC.jpg

5. THC

Tetrahydrocannabinol

THC is the main psychoactive compound in the cannabis plant.

There are two main types:

  • Delta-8-THC — contained in very small amounts

  • Delta-9-THC — the most abundant form of THC in the cannabis plant

THC activates both CB1 and CB2 endocannabinoid receptors, causing changes in neurotransmitters like dopamine, norepinephrine, and most importantly, serotonin. It’s this change in neurotransmitter levels that produce the bulk of the high experienced by this compound.

Aside from its psychoactive effects, THC has medicinal benefits of its own.

It’s mentally stimulating and has some potent antidepressant effects through its euphoric effects.

THC Medicinal Actions

  • Appetite stimulant

  • Sedative (low doses)

  • Stimulant (high doses)

Receptors Affected

  • CB1 and CB2 agonist [11]

  • PPAR gamma receptor agonist [11, 15].

Metabolism

  • CYP2C9

 
thcv-Tetrahydrocannabivarin-header.jpg

6. THCV

Tetrahydrocannabivarin

THCV is the fraternal twin of THC.

It’s virtually identical except for one slight chemical difference — THCV is missing two carbon atoms.

This makes the effects of THCV very similar to THC — but is much weaker in its effects.

One study reported THCV as being 20-25% as strong as THC in its psychoactive effects [12].

There are others affected by this, including CBCV, and CBDV, though they are in far less concentrations.

tse-cannabinoid-family.jpg

THCV Medicinal Actions

  • Appetite suppressant

  • Euphoric

  • Antispasmodic

  • Paranoic

Receptors Affected

  • Vanilloid receptor agonist (TRPV3 and TRPV4) [13].

 
other-cannabinoids-header.jpg

7. Other Cannabinoids

There are also a lot of cannabinoids that can be found in much lower concentrations.

These make up the bottom 5% of the cannabinoid profile.

Few of these cannabinoids have many studies on them aside from chemical mapping to identify their structure.

We may see more research on these cannabinoids in the near future.

Some Novel Cannabinoids Include:

  • CBCV (cannabichromevarin)

  • CBDV (cannabidivarin)

  • CBE (cannabielsoin)

  • CBGM (cannabigerol monomethyl ether)

  • CBGV (cannabigerovarin)

  • CBL (cannabicyclol)

  • CBT (cannabicitran)

  • CBV (cannabivarin)

A Note On Synthetic Cannabinoids

There are also synthetic cannabinoids. These are compounds that are similar in shape and function to cannabinoids produced in our bodies, or in the cannabis plant.

It’s recommended that you stay far away from the synthetic cannabinoids — not only do they lack many of the medicinal actions of cannabis, they have the potential to cause serious harm.

The street drug known as “spice” is a combination of various synthetic cannabinoids. They were designed as an attempt to circumvent the legal hurdles preventing the sale of cannabis products for recreational use — and have since become a major cause of addiction and abuse.

Side-Effects of Synthetic Cannabinoid Use

  • Agitation and anxiety
  • Blurred vision
  • Chest pain
  • Death
  • Hallucinations
  • Heart attack
  • High blood pressure
  • Kidney failure
  • Nausea and vomiting
  • Paranoia
  • Psychosis
  • Racing heart
  • Seizures
  • Shortness of breath

List of Synthetic Cannabinoids

  • JWH-018
  • JWH-073
  • JWH-200
  • AM-2201
  • UR-144
  • XLR-11
  • AKB4
  • Cannabicyclohexanol
  • AB-CHMINACA
  • AB-PINACA
  • AB-FUBINACA
 
terpenes.jpg

Cannabis Terpenes

Terpenes are a class of compounds characterized by their volatile nature, and hydrocarbon-based structure. These are contained in high amounts in the essential oil of plants.

Terpenes have a very low molecular weight, and will evaporate under low temperatures. This, combined with their characteristic aromas is what gives many plants their scent. Conifer trees, fruits, and many flowers (including cannabis) all owe their aroma to their terpene profile.

Each plant can contains hundreds of different terpenes — many of which will even overlap into unrelated plant species. Cannabis shares terpenes with pine trees, many different flowers, citrus fruits, and nutmeg, among others.

Terpenes add flavor as well as additional medicinal benefits. Terpenes often have antibacterial, antiviral, antinflammatory, and anxiolytic effects.

List of Cannabis Terpenes

  • A-humulene
  • a-Terpenine
  • Alpha Bisabolol
  • alpha-Terpineol
  • Alpha/Beta Pinene
  • Beta-Caryophyllene
  • Bisabolol
  • Borneol
  • Camphene
  • Caryophyllene oxide
  • D-Linalool
  • Eucalyptol (1, 8 cineole)
  • Geraniol
  • Guaiol
  • Isopulegol
  • Limonene
  • Myrecene
  • Nerolidol
  • p-Cymene
  • Phytol
  • Pulegone
  • Terpineol-4-ol
  • Terpinolene
  • Trans Ocimene
  • Valencene
  • ∆-3-carene
 

Pharmacokinetics/Pharmacodynamics

Cannabinoids work by mimicking the endocannabinoids anandamide and 2-AG.

Endocannabinoids-anandamide-2-ag.jpg

Learn more about cannabinoid metabolism.

 

Clinical Applications of Cannabis

As an herb, cannabis is very useful. It works through a set of receptors most other plants don’t interact with — the endocannabinoid system.

The endocannabinoid system plays a major role in maintaining homeostasis. This gives cannabis an effect profile similar to adaptogens — but through different mechanisms.

Cannabis is similar to adaptogens in that it offers a bidirectional effect profile — which means it can both increase, and decrease tissue function according to its homeostatic baseline.

But cannabis isn’t quite an adaptogen because it can’t increase the bodies resistance to stress, and doesn’t appear to exert any action on the hypothalamus or adrenal glands directly.

Although cannabis has broad actions and therefore can provide benefit to a wide range of body systems — choosing the right product, strain, and phenotype for the job is critical.

An experienced herbalist or naturopath using cannabis will take into account the cannabinoid profile, terpene content, and anecdotal effects of each strain or CBD product being used.

Unlike other herbs, you have to be very particular about the type of cannabis being used for each condition.

What Constitutes “Medicinal” Cannabis?

There’s a big difference between using cannabis because “it’s healthy”, and using it as a therapeutic agent aimed at treating a specific disease process.

Although it can be used as both, daily supplementing cannabis or extracts like CBD don’t constitute medical cannabis.

However, you can use cannabis to address the symptoms, or underlying causes for some conditions.

 

Cautions:

Caution advised whenever using cannabis due to the potential for intoxicating side-effects. Without careful consideration of cannabinoid profile, some strains, or cannabis products may make symptoms for certain conditions worse — especially anxiety, psychosis, bipolar disorder, and insomnia.

 

Author

Justin Cooke, BHSc

The Sunlight Experiment

(Updated Jan 2019)

 

Recent Blog Posts:

References:

  1. Sharma P, Murthy P, Bharath M.M.S. (2012). Chemistry, Metabolism, and Toxicology of Cannabis: Clinical Implications. Iran J Psychiatry 2012; 7:4: 149-156

  2. Aizpurua-Olaizola, O., Soydaner, U., Öztürk, E., Schibano, D., Simsir, Y., Navarro, P., ... & Usobiaga, A. (2016). Evolution of the cannabinoid and terpene content during the growth of Cannabis sativa plants from different chemotypes. Journal of natural products, 79(2), 324-331.

  3. Shevyrin, V. A., & Morzherin, Y. Y. (2015). Cannabinoids: structures, effects, and classification. Russian Chemical Bulletin, 64(6), 1249-1266.

  4. De Petrocellis, L., Orlando, P., Moriello, A. S., Aviello, G., Stott, C., Izzo, A. A., & Di Marzo, V. (2012). Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation. Acta physiologica, 204(2), 255-266.

  5. De Meijer, E. P. M., Hammond, K. M., & Micheler, M. (2009). The inheritance of chemical phenotype in Cannabis sativa L.(III): variation in cannabichromene proportion. Euphytica, 165(2), 293-311.

  6. Nelson, K., Walsh, D., Deeter, P., & Sheehan, F. (1994). A phase II study of delta-9-tetrahydrocannabinol for appetite stimulation in cancer-associated anorexia. Journal of palliative care.

  7. Bisogno, T., Hanuš, L., De Petrocellis, L., Tchilibon, S., Ponde, D. E., Brandi, I., ... & Di Marzo, V. (2001). Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. British journal of pharmacology, 134(4), 845-852.

  8. De Petrocellis, L., Vellani, V., Schiano-Moriello, A., Marini, P., Magherini, P. C., Orlando, P., & Di Marzo, V. (2008). Plant-derived cannabinoids modulate the activity of transient receptor potential channels of ankyrin type-1 and melastatin type-8. Journal of Pharmacology and Experimental Therapeutics, 325(3), 1007-1015.

  9. Cascio, M. G., Gauson, L. A., Stevenson, L. A., Ross, R. A., & Pertwee, R. G. (2010). Evidence that the plant cannabinoid cannabigerol is a highly potent α2‐adrenoceptor agonist and moderately potent 5HT1A receptor antagonist. British journal of pharmacology, 159(1), 129-141.

  10. Farrimond, J. A., Whalley, B. J., & Williams, C. M. (2012). Cannabinol and cannabidiol exert opposing effects on rat feeding patterns. Psychopharmacology, 223(1), 117-129.

  11. Pertwee, R. G. (2008). The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9‐tetrahydrocannabinol, cannabidiol and Δ9‐tetrahydrocannabivarin. British journal of pharmacology, 153(2), 199-215.

  12. Hollister, L. E. (1974). Structure-activity relationships in man of cannabis constituents, and homologs and metabolites of Δ9-tetrahydrocannabinol. Pharmacology, 11(1), 3-11.

  13. Pertwee, R. G. (2006). The pharmacology of cannabinoid receptors and their ligands: an overview. International journal of obesity, 30(S1), S13.

  14. Compton, D. R., Rice, K. C., De Costa, B. R., Razdan, R. K., Melvin, L. S., Johnson, M. R., & Martin, B. R. (1993). Cannabinoid structure-activity relationships: correlation of receptor binding and in vivo activitiesJournal of Pharmacology and Experimental Therapeutics265(1), 218-226.

  15. Burstein, S. (2005). PPAR-γ: a nuclear receptor with affinity for cannabinoids. Life sciences, 77(14), 1674-1684.García-Arencibia, M., González, S., de Lago, E., Ramos, J. A., Mechoulam, R., & Fernández-Ruiz, J. (2007). Evaluation of the neuroprotective effect of cannabinoids in a rat model of Parkinson's disease: importance of antioxidant and cannabinoid receptor-independent properties. Brain research, 1134, 162-170.

  16. Martín-Moreno, A. M., Reigada, D., Ramírez, B. G., Mechoulam, R., Innamorato, N., Cuadrado, A., & de Ceballos, M. L. (2011). Cannabidiol and other cannabinoids reduce microglial activation in vitro and in vivo: relevance to Alzheimers′ disease. Molecular pharmacology, mol-111.

  17. Dirikoc, S., Priola, S. A., Marella, M., Zsürger, N., & Chabry, J. (2007). Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. Journal of Neuroscience, 27(36), 9537-9544.

  18. Malfait, A. M., Gallily, R., Sumariwalla, P. F., Malik, A. S., Andreakos, E., Mechoulam, R., & Feldmann, M. (2000). The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proceedings of the National Academy of Sciences, 97(17), 9561-9566.

  19. Specter, S., Lancz, G., & Hazelden, J. (1990). Marijuana and immunity: tetrahydrocannabinol mediated inhibition of lymphocyte blastogenesis. International journal of immunopharmacology, 12(3), 261-267.

  20. Klein, T. W., Kawakami, Y., Newton, C., & Friedman, H. (1991). Marijuana components suppress induction and cytolytic function of murine cytotoxic T cells in vitro and in vivo. Journal of Toxicology and Environmental Health, Part A Current Issues, 32(4), 465-477.

  21. McCoy, K. L., Gainey, D., & Cabral, G. A. (1995). delta 9-Tetrahydrocannabinol modulates antigen processing by macrophages. Journal of Pharmacology and Experimental Therapeutics, 273(3), 1216-1223.

  22. Coffey, R. G., Yamamoto, Y., Snella, E., & Pross, S. (1996). Tetrahydrocannabinol inhibition of macrophage nitric oxide production. Biochemical pharmacology, 52(5), 743-751.

  23. Formukong, E. A., Evans, A. T., & Evans, F. J. (1988). Analgesic and antiinflammatory activity of constituents ofCannabis sativa L. Inflammation, 12(4), 361-371.

  24. Watzl, B., Scuderi, P., & Watson, R. R. (1991). Marijuana components stimulate human peripheral blood mononuclear cell secretion of interferon-gamma and suppress interleukin-1 alpha in vitro. International journal of immunopharmacology, 13(8), 1091-1097.

  25. Srivastava, M. D., Srivastava, B. I. S., & Brouhard, B. (1998). Δ9 tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology, 40(3), 179-185.

  26. Pan, H., Mukhopadhyay, P., Rajesh, M., Patel, V., Mukhopadhyay, B., Gao, B., ... & Pacher, P. (2009). Cannabidiol attenuates cisplatin-induced nephrotoxicity by decreasing oxidative/nitrosative stress, inflammation, and cell death. Journal of Pharmacology and Experimental Therapeutics, 328(3), 708-714.

  27. Mecha, M., Feliú, A., Iñigo, P. M., Mestre, L., Carrillo-Salinas, F. J., & Guaza, C. (2013). Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiology of disease, 59, 141-150.

  28. Notcutt, W., Langford, R., Davies, P., Ratcliffe, S., & Potts, R. (2012). A placebo-controlled, parallel-group, randomized withdrawal study of subjects with symptoms of spasticity due to multiple sclerosis who are receiving long-term Sativex®(nabiximols). Multiple Sclerosis Journal, 18(2), 219-228.

  29. Woerly, S., Marchand, R., & Lavallée, G. (1991). Interactions of copolymeric poly (glyceryl methacrylate)-collagen hydrogels with neural tissue: effects of structure and polar groups. Biomaterials, 12(2), 197-203.

  30. Wade, D. T., Collin, C., Stott, C., & Duncombe, P. (2010). Meta-analysis of the efficacy and safety of Sativex (nabiximols), on spasticity in people with multiple sclerosis. Multiple Sclerosis Journal, 16(6), 707-714.

  31. Brady, C. M., DasGupta, R., Dalton, C., Wiseman, O. J., Berkley, K. J., & Fowler, C. J. (2004). An open-label pilot study of cannabis-based extracts for bladder dysfunction in advanced multiple sclerosis. Multiple Sclerosis Journal, 10(4), 425-433.

  32. Barnes, M. P. (2006). Sativex®: clinical efficacy and tolerability in the treatment of symptoms of multiple sclerosis and neuropathic pain. Expert opinion on pharmacotherapy, 7(5), 607-615.

  33. Leung, L. (2011). Cannabis and its derivatives: review of medical use. The Journal of the American Board of Family Medicine, 24(4), 452-462.

  34. Grotenhermen, F., & Müller-Vahl, K. (2012). The therapeutic potential of cannabis and cannabinoids. Deutsches Ärzteblatt International, 109(29-30), 495.

  35. Kwiatkoski, M., Guimaraes, F. S., & Del-Bel, E. (2012). Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury. Neurotoxicity research, 21(3), 271-280.

  36. Chagas, M. H. N., Zuardi, A. W., Tumas, V., Pena-Pereira, M. A., Sobreira, E. T., Bergamaschi, M. M., ... & Crippa, J. A. S. (2014). Effects of cannabidiol in the treatment of patients with Parkinson’s disease: an exploratory double-blind trial. Journal of Psychopharmacology, 28(11), 1088-1098.

  37. Iuvone, T., Esposito, G., De Filippis, D., Scuderi, C., & Steardo, L. (2009). Cannabidiol: a promising drug for neurodegenerative disorders?. CNS neuroscience & therapeutics, 15(1), 65-75.

  38. Fernández‐Ruiz, J., Sagredo, O., Pazos, M. R., García, C., Pertwee, R., Mechoulam, R., & Martínez‐Orgado, J. (2013). Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?. British journal of clinical pharmacology, 75(2), 323-333.

  39. Yamaori, S., Kushihara, M., Yamamoto, I., & Watanabe, K. (2010). Characterization of major phytocannabinoids, cannabidiol and cannabinol, as isoform-selective and potent inhibitors of human CYP1 enzymes. Biochemical pharmacology, 79(11), 1691-1698.

  40. Yamaori, S., Maeda, C., Yamamoto, I., & Watanabe, K. (2011). Differential inhibition of human cytochrome P450 2A6 and 2B6 by major phytocannabinoids. Forensic Toxicology, 29(2), 117-124.

  41. Yamaori, S., Okamoto, Y., Yamamoto, I., & Watanabe, K. (2011). Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for cytochrome P450 2D6. Drug Metabolism and Disposition, dmd-111.

  42. Yamaori, S., Ebisawa, J., Okushima, Y., Yamamoto, I., & Watanabe, K. (2011). Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: role of phenolic hydroxyl groups in the resorcinol moiety. Life sciences, 88(15-16), 730-736.

  43. Yamaori, S., Ebisawa, J., Okushima, Y., Yamamoto, I., & Watanabe, K. (2011). Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: role of phenolic hydroxyl groups in the resorcinol moiety. Life sciences, 88(15-16), 730-736.

  44. Koch, M., Dehghani, F., Habazettl, I., Schomerus, C., & Korf, H. W. (2006). Cannabinoids attenuate norepinephrine‐induced melatonin biosynthesis in the rat pineal gland by reducing arylalkylamine N‐acetyltransferase activity without involvement of cannabinoid receptors. Journal of neurochemistry, 98(1), 267-278.

  45. Jenny, M., Santer, E., Pirich, E., Schennach, H., & Fuchs, D. (2009). Δ9-Tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. Journal of neuroimmunology, 207(1-2), 75-82.

  46. Takeda, S., Usami, N., Yamamoto, I., & Watanabe, K. (2009). Cannabidiol-2', 6'-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitor. Drug Metabolism and Disposition.

  47. Usami, N., Yamamoto, I., & Watanabe, K. (2008). Generation of reactive oxygen species during mouse hepatic microsomal metabolism of cannabidiol and cannabidiol hydroxy-quinone. Life sciences, 83(21-22), 717-724.

  48. Pertwee, R. G., Howlett, A. C., Abood, M. E., Alexander, S. P. H., Di Marzo, V., Elphick, M. R., ... & Mechoulam, R. (2010). International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid receptors and their ligands: beyond CB1 and CB2. Pharmacological reviews, 62(4), 588-631.

Graviola (Annona muricata)

graviola-cover.jpg

Graviola Summary

Graviola is a large tropical tree with a rich history of traditional use for conditions like cancer, parasitic infection, insomnia, and dysentery. Modern use remains very similar, mainly focusing on tension headaches and muscle aches, insomnia, diabetes, cancer, hypertension, and parasitic infection.

Although the entire plant has been used as medicine by various traditional medical systems, the most common form the plant is available in today is as a leaf extract, and raw leaves intended for tea.

Graviola is gaining in popularity outside worldwide as a general health supplement, blood sugar regulator, and anticancer agent. As a result it is getting easier to find the herb as time goes on. It is likely this tea will become a staple in Western herbal medicine in the coming years.

 

+ Indications

  • Adjunctive Cancer Treatment (Various)
  • Bacterial infection
  • Cold/Flu
  • Diabetes
  • Dysentery
  • Fever
  • Jaundice
  • Pain
  • Parasitic infection

+ Contraindications

  • May exacerbate Parkinson's Disease symptoms (Acetogenin content)
  • Caution advised in combination with other hypoglycemic drugs due to potential additive effect.

Herbal Actions:

  • Anticancer
  • Antinflammatory
  • Antioxidant
  • Antispasmodic
  • Anticonvulsant
  • Antidepressant
  • Antidiabetic
  • Antibacterial
  • Antiarthritic
  • Antilithic
  • Antimalarial
  • Bradycardic
  • Digestive stimulant
  • Febrifuge
  • Hepatoprotective
  • Hypotensive
  • Sedative
  • Vasodilator
 

How Is Graviola Used?

Graviola is mainly used as an adjunctive treatment for cancer, especially leukemia and other haematological cancers, as well as prostate, colon, and breast cancers.

Graviola is also popular as an antidiabetic herb, and can be used to reduce hypertension, especially in combination with diabetes or metabolic syndrome.

Graviola is a potent antiparasitic, useful for a wide range of different parasitic species, including worms, protozoa, and bacterial parasites.

 

Traditional Uses

South America

Graviola originated from South America and/or the Carribean. All parts of the plant were used as medicine for a wide range of conditions.

The most common use of the plant appears to involve cancer treatment and parasitic infection.

The darkest leaves on the plants were used primarily as a sedative or antispasmodic. They were used to treat insomnia, arthritic pains, colic, dysentery, muscle aches, headaches, and diabetes. The leaves were often placed inside a pillow or bedsheets to improve sleep.

In Brazil, the leaves were made into a tea for treating various liver conditions. The oil of the leaves and unripe fruits were used topically for treating neuralgia, and arthritis.

In Peru, the leaves were used to treat excess catarrh, and the bark and root were used for treating diabetes, insomnia, and muscle aches.

In Guyana, the leaves were used as a heart tonic.

Southeast Asia

In Southeast Asia, graviola was an important treatment for malaria. It was made into candies, ice cream, and syrups for treating malaria and other parasites.

 

Weekly Dose

Part Used

  • Leaves

Family Name

  • Annonaceae

Distribution

  • North & South America, The Caribbean, Indonesia, Western Africa, Pacific Islands

Follow Us On Social Media

Constituents of Interest

  • Acetogenins
  • Alkaloids (reticulin, coreximine, coclarine and anomurine)
  • Essential oils (β-caryophyllene, δ-cadinene, epi-α-cadinol and α-cadinol)
  • Quercetin

Common Names

  • Graviola
  • Custard Apple Tree
  • Soursop
  • Annona
  • Guanabana (South America)

Quality

  • Cool*

Pregnancy

  • Unknown

Taste

  • Sour

Duration of Use

  • Avoid long term use.
 

Botanical Information

Graviola is a large tree, growing to a height of 10m. It requires high humidity, warm weather, and high annual rainfall in order to thrive. It produces large, edible fruits with an acidic taste (hence the common name soursop).

There are over 130 different genera in the Annonaceae family, and around 2300 different species. The Annona genus itself has about 70 different species. Annona muricata is the most commonly grown worldwide.

 

Research Overview:

Still compiling research

 

Phytochemistry

There are over 100 annonaceous acetogenins in the plant, which are considered to be the primary active constituents of the plant. Structurally these chemicals are derivatives of long chain (C35 or C37) fatty acids. These compounds are cytotoxic against tumour cell lines, and molluscicidal.

Graviola is also rih in alkaloids, saponins, terpenoids, flavonoids, coumarins, lactones, anthraquinones, tannins, cardiac glycosides, phenols, and phytosterols.

Complete Phytochemical Makeup

Annonaceous Acetogenins

The leaves contain annomuricins A and B, gigantetrocin A, annonacin-10-one, muricatetrocins A and B, annonacin, goniothalamicin, muricatocins A and B, annonacin A, (2,4-trans)-isoannonacin, (2,4-cis)-isoannonacin, annomuricin C, muricatocin C, gigantetronenin, annomutacin, (2,4-trans)-10R-annonacin-A-one, (2,4-cis)-10R-annonacin-A-one, annopentocins A, B and C, cis- and trans-annomuricinD-ones, annomuricine, muricapentocin, muricoreacin and murihexocin C and annocatacin A and B,

Alkaloids

Graviola contains reticulin, coreximine, coclarine and anomurine

Essential Oils

Graviola contains β-caryophyllene, δ-cadinene, epi-α-cadinol and α-cadinol

 

Clinical Applications Of Graviola:

Graviola is useful for parasitic infection, including protozoan, and helminth parasites. It's used as a mild sedative and antispasmodic, and can be very useful for gastrointestinal inflammation and dysbiotic conditions.

Graviola is also a popular treatment for diabetes by slowing lipid peroxidation, and restoring islet beta-cells in the pancreas.

It's commonly used as an adjunctive treatment of cancer, especially haematological cancers and colon cancer.

 

Cautions:

Graviola has been reported to increase symptoms of Parkinson's Disease.

Caution advised in combination with other hypoglycemic drugs due to potential additive effect.

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated November 2018)

 

Recent Blog Posts:

References:

  1. Moghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H. M., & Kadir, H. A. (2015). Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. International journal of molecular sciences, 16(7), 15625-15658.

  2. De Sousa, O. V., Vieira, G. D. V., De Pinho, J. D. J. R., Yamamoto, C. H., & Alves, M. S. (2010). Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. International journal of molecular sciences, 11(5), 2067-2078.

  3. Torres, M. P., Rachagani, S., Purohit, V., Pandey, P., Joshi, S., Moore, E. D., ... & Batra, S. K. (2012). Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer letters, 323(1), 29-40.

  4. Coria-Tellez, A. V., Montalvo-Gónzalez, E., Yahia, E. M., & Obledo-Vázquez, E. N. (2016). Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arabian Journal of Chemistry.

  5. Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F., & AEl-Shemy, H. (2014). Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pacific journal of tropical medicine, 7, S355-S363.

  6. Arroyo, J., Martínez, J., Ronceros, G., Palomino, R., Villarreal, A., Bonilla, P., ... & Quino, M. (2009, September). Efecto hipoglicemiante coadyuvante del extracto etanólico de hojas de Annona muricata L (guanábana), en pacientes con diabetes tipo 2 bajo tratamiento de glibenclamida. In Anales de la Facultad de Medicina (Vol. 70, No. 3, pp. 163-167). UNMSM. Facultad de Medicina.

  7. Adewole, S., & Ojewole, J. (2009). Protective effects of Annona muricata Linn.(Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. African journal of traditional, complementary and alternative medicines, 6(1).

  8. Adeyemi, D. O., Komolafe, O. A., Adewole, O. S., Obuotor, E. M., Abiodun, A. A., & Adenowo, T. K. (2010). Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with extracts of Annona muricata. Folia morphologica, 69(2), 92-100.

  9. Adewole, S. O., & Caxton-Martins, E. A. (2006). Morphological changes and hypoglycemic effects of Annona muricata linn.(annonaceae) leaf aqueous extract on pancreatic β-cells of streptozotocin-treated diabetic rats. African Journal of Biomedical Research, 9(3).

Codonopsis (Codonopsis pilosa)

Codonopsis, also known as "poor mans ginseng" is a popular herb in traditional Chinese medicine. It's used to treat cardiovascular disease, high cholesterol, fatigue, and...

Reishi (Ganoderma lucidum)

reishi-ganoderma-lucidum.jpg

Reishi Overview:

Reishi is a medicinal forest-grown fungus. It's highly revered in tradtional medical systems across Asia for its powerful immune-enhancing and longevity promoting benefits.

Medicinal mushrooms are notorious for their complex immunological benefits involving bidirectional changes to various immune processes. Reishi is no different, and is often thought to be the most significant medicinal mushroom species of all. It's popular for prevention and treatment of many immune-related conditions including cancer, autoimmunity, underactive immune function, and both acute and chronic infections.

 

+ Indications

  • High cholesterol
  • Heart palpitations
  • Hyperlipidemia
  • High blood pressure
  • Food sensitivities
  • Cancer
  • Diabetes
  • Allergies
  • Viral infection (including HIV and herpes simplex virus)
  • Neuralgia
  • Bronchitis and asthma

+ Contraindications

  • Caution advised in combination with ACE inhibitory medictions

Herbal Actions:

  • Adaptogen
  • Immunomodulator
  • Analgesic
  • Muscle relaxant
  • Nervine Relaxant
  • Hepatoprotective
  • Pulmonary trophorestorative
  • Cardiotonic
  • Chemoprotective
  • Anti-Cancer
  • Antiviral
  • Antibacterial
 

How Do I Use Reishi?

Reishi has many uses, however, the main uses involve the immune system. It has the unique ability to both stimulate and inhibit immune function, making it useful for nearly any type of immune dysfunction. It's used as a supportive treatment for cancer therapy and infection to increase the bodies immune response, as well as with autoimmune conditions to reduce overactive immune sensitivity.

Reishi is also used for chronic anxiety, depression, and hyperactivity. In traditional Chinese medicine, it's popular for treating lung conditions such as wheezing, excessive phlem production, and chronic coughing.

 

Weekly Dose

Part Used

  • Fruiting body, Spores, Mycelium

Family Name

  • Ganodermataceae

Distribution

  • Asia, Europe, and North America

Follow Us On Social Media

Constituents of Interest

  • beta-glucans
  • Ergosterol

Common Names

  • Reishi
  • Ling Zhi
  • Saiwai-Take
  • Kishiban

CYP450

  • Unknown

Quality

  • Neutral

Pregnancy

  • No adverse reactions expected.

Taste

  • Bitter

Duration of Use

  • Suitable for long term use.
 

Mycological Info:

There are about 80 different species of Ganoderma, many of which are used as medicine to varying degrees. The Ganodermataceae contains 8 genera and roughly 300 different species.

 

Research Overview:

Still compiling research.

 

Clinical Applications Of Reishi:

Reishi is used as a supportive agent for cancer, autoimmune conditions, cardiovascular dysfunctions, respiratory dysfunctions, viral and bacterial infection, and hypertension. It's rarely used on its own, but makes for a great addition to herbal formulations.

 

Cautions:

Caution advised in combination with ACE inhibitor medications due to potential drug interactions.

 

Author:

Justin Cooke

The Sunlight Experiment

(Updated November 2018)

 

Recent Blog Posts:

Lion's Mane (Hericium erinaceus)

lions-mane-mushroom-hericium.jpg

Lion's Mane Summary

Lion's Mane is a medicinal fungus with a characteristic "fuzzy" appearance resembling that of a lions mane, or perhaps the head of a mop. It's found in temperate forests in North America, Europe, and Asia. The medicinal benefits of this fungus mainly involve the nervous system. It's also a popular culinary species with a falvour resembing that of lobster.

In recent years lion's mane has caught the eye of the nootropic industry for its ability to upregulate nerve growth factor.

 

+ Indications

  • Alzheimer's disease
  • Bacterial infection
  • Cancer (supportive)
  • Cognitive decline
  • Dementia
  • Diabetes
  • Dyslipidaemia
  • Fatigue
  • Gastric ulcers
  • Gastritis
  • Hepatobiliary disease
  • Inflammation
  • Metabolic syndrome
  • Neurodegenerative disorders
  • Multiple sclerosis
  • Wounds (topically)

+ Contraindications

  • Bleeding disorders
  • Surgery (discontinue 2 weeks prior to surgery)
  • May interact with anticoagulant medications

Herbal Actions:

  • Nootropic
  • Immunomodulator
  • Nervine
  • Antibacterial
  • Anticancer
  • Antioxidant
  • Cardioprotective
  • Hepatoprotective
  • Antidiabetic
 

How Is Lion's Mane Used?

Lion's mane is mainly used for neurodegenerative disorders like dementia and multiple sclerosis. It's also popular as a nootropic agent for supporting optimal cognitive function long term.

 

Weekly Dose

Part Used

  • Fungus

Family Name

  • Hericiaceae

Distribution

  • North America, Europe, Russia, Mountainous regions of Asia

Follow Us On Social Media

Constituents of Interest

  • Hericnones
  • Erinacines
  • Lactones
  • Polysaccharides

Common Names

  • Lion's Mane
  • Monkey's Head
  • Hedgehog Fungus
  • Pom Pom
  • Houtou (China)
  • Shishigashira (China)
  • Yamabushitake (Japan)

Pregnancy

  • Safe during pregnancy.

Duration of Use

  • Long term use acceptable.
 

Mycological Information

The Hericiaceae family of fungi are saprophytic, and normally grow in cooler, mountainous regions across the globe. It contains a number of species used medicinally and nutritionally.

Hericium spp. has characteristic "tooth" structures on its fruiting body, giving it a hair appearance.

 

Research Overview:

Still compiling research

 

Clinical Applications Of Lion's Mane:

Lion's mane has many uses, but the most well-known is as a neuroprotective, and nootropic benefits. It's useful for neurodegenerative disorders including multipple sclerosis, Alzheimer's disease, and Parkinson's disease.

Other uses include depression and anxiety, cancer, diabetes, gastrointestinal infection, and fatigue.

 

Cautions:

Caution advised with any blood clotting conditions or medications due to possible agonistic interactions.

 

Author:

Justin Cooke

The Sunlight Experiment

(Updated November 2018)

 
lions-mane-mushroom.jpg
 

Recent Blog Posts:

Rhodiola (Rhodiola rosea)

Rhodiola-herb.jpg

Rhodiola Overview:

Rhodiola was made famous by some earlier research done by Russian scientists in the 1960's. Although a lot of this research still hasn't been released to the public, there has been a lot fo new studies put forward to make up for this loss.

Rhodiola is well revered as an adaptogen for treating fatigue, cognitive decline, depression, and for athletic enhancement. It's considered to be a mild stimulant, though it doesn't produce the "wired" feeling many other stimulants produce. It increases energy levels and makes us more tolerant to stressful situations.

Although there is still a lot of research lacking, we know that Rhodiola can reduce cortisol levels in the body after exposure to stress, however, the details on how this interaction exists is still not well understood. There is also a great deal of confusion around which chemicals are active in the herb, some studies showing the rosavins, others tyrosol and the rhodiolasides. A result from this confusion and dispute is a wide range of differentiation between the "standardised doses" of this herb. Each manufacturer tends to have a preference for one chemical group over the other in their products.

+ Indications

  • Age-related cognitive decline
  • Altitude sickness
  • Athletic performance enhancement
  • Cancer
  • Chronic fatigue syndrome
  • Chronic heart failure (CHF)
  • Depression
  • Fatigue
  • Fibromyalgia
  • HIV
  • Hypertension
  • Insomnia (Sleep maintenance)
  • Metabolic Syndrome
  • Poor appetite
  • Poor concentration
  • Substance abuse

+ Contraindications

None noted.

Main Herbal Actions:

  • Adaptogen
  • CNS Stimulant (mild)
  • Antidepressant
  • Cardioprotective
  • Nootropic
 

Main Uses:

Rhodiola rosea is mainly used for its adaptogenic qualities, especially those specific to lowering cortisol levels. It's reliable for improving fatigue in debilitated or chronically fatigued people, as well as those experiencing generalised adaptive disorder, depression, or acute periods of extreme stress. Its a popular nootropic additive for increasing focus and mental endurance and is popular among athletes for increasing physical endurance as well.

 

Daily Dosage

Liquid Extract

Ratio: 2:1

2.5-6 mL

Weekly Dosage

Liquid Extract

Ratio: 2:1

20-40 mL

 

Part Used

Rhoot/Rhizome

Family Name

Crassulaceae

Distribution

Northern Climates of North America, Asia, and Europe

Follow Us On Social Media

Constituents of Interest

  • Rosavin
  • Tyrosol
  • Salidroside
  • Rhodiolaside

Common Names

  • Rhodiola
  • Rose Root
  • Arctic Root
  • Golden Root
  • King's Crown
 

Botanical Info:

Although Rhodiola rosea is the preferred species used, their are a number of species used in various indigenous medical systems such as Rhodiola alterna, Rhodiola brevipetiolata, Rhodiola crenulata, Rhodiola kirilowii, Rhodiola quadrifida, Rhodiola sachalinensis, and Rhodiola sacra.

The Crassulaceae family contains 34 genera, and 1400 species. Most of the plants in this family can be found in cooler climates.

Another medicinal species in this family is Kalanchoe.

 

Level Of Research:

 

Clinical Applications Of Rhodiola:

Rhodiola serves as a reliable adaptogen with little to no side effects noted in any of the studies listed. It's useful for those suffering from high stress conditions, chronically fatigued, or depressed. Its also useful for increasing athletic performance in athletes, and reducing the chances of being affected by altitude sickness when travelling above 2500 metres.

 

Cautions:

Caution when using Rhodiola with mania as the mental stimulation may produce negative side effects.

 
 
 

Recent Blog Posts:

Frankincense (Boswellia serrata)

frankincense resin and oil

Frankincense Summary

Frankincense has been a valuable herb for a long time. It was so valuable at the time, it was one of the three precious gifts given to Jesus at his birth along with Myrhh, and gold. The value of frankincense comes from its powerful medicinal actions, which we now understand to be through antiseptic and antinflammatory actions. In the past, however, these medicinal actions were not well understood, but the wide range of conditions antinflammatories can treat made it a bit of a panaceae of its time. On top of this, the rich volatile oil content made frankincense an excellent source of incense for celebrations and ceremonies.

Frankincense is incredibly hardy, growing out of rock faces in the scortching Somali sun, often going months without water.

 

+ Indications

  • Asthma
  • Cancer
  • Crohn's disease
  • Diverticulitis
  • General inflammation
  • Inflammatory bowel disease (IBD)
  • Inflammatory Bowel Syndrome (IBS)
  • Lymphoma
  • Osteoarthritis
  • Rheumatoid arthritis
  • Systemic Lupus Erythematosus (SLE)
  • Ulcerative colitis

+ Contraindications

None noted.

+ Mechanisms

  • 5-LOX inhibitor
  • Mild COX inhibitor

Herbal Actions:

  • Antioxidant
  • Antinflammatory
  • Antiseptic
  • Carminative
  • Vulnerary
  • Emmenagogue
 

What Is Frankincense Used For?

The main use for frankincense internally is for its potent antinflammatory effects. It works mainly as a 5-LOX inhibitor, which differentiates it from COX inhibitors like Aspirin, Salix alba, or Curcuma longa. Frankincense is best used for conditions like osteoarthritis and vascular/neural inflammation, and in combination with COX inhibitors for inflammatory bowel disease or hyperpermeability of the gastrointestinal lining.

Topically frankincense is used in salves or as a linement for wounds and infection. The essential oil is inhaled for asthma, lung infeciton, or as a mild sedative.

 

Traditional Uses

+ Ayurvedic Medical System

Boswellia was commonly used in Ayurveda as an astringent and anti-inflammatory agent topically and as a stimulant and expectorant topically.

It was used for pulmonary conditions, diarrhea, rheumatism, dysentery, gonorrhea, dysmenorrhea, syphilis, weakness, poor appetite, and various liver conditions.

 

Weekly Dose

Weekly Dose

(Powdered Extract)

  • 2100-3500 mg

Part Used

  • Resin

Family Name

  • Burseraceae

Distribution

  • Middle East

Follow Us On Social Media

Constituents of Interest

  • Acetyl-11-keto-beta-boswellic acid (AKBA):
  • Alpha-boswellic acid
  • 3-acetyl-ß-boswellic acid
  • Pinene

Common Names

  • Frankincense
  • Olibanum
  • Boswellia
  • Sallaki (Sanskrit)

CYP450

CYP3A4, CYP1A2, CYP2C9

Quality

Unknown

Pregnancy

Unknown

Taste

Slightly minty, bitter

Duration of Use

  • Suitable for long term use.
 

Botanical Information

Frankincense is a member of the Burseraceae family of plants, which includes 17-19 different genera and 540 species. This family is characterised by a nonallergenic resin produced in nearly all plant tissue as well as flaking bark patterns.

The Boswellia genus contains roughly 30 different species. The main species used today is Boswellia serrata, although Boswellia carteri is also used in some parts of the world. Biblical frankincense is believed to have been Boswellia sacra.

 

Harvesting Collection, and Preparation:

Due to the high alcohol content needed to extract the resin, this herb is generally given as a tablet or capsule, rather than a tincture or liquid extract.

 

Pharmacology & Medical Research

+ Neurological Disorders

Boswellic acids ability to pass the blood brain barrier, combined with its potent antinflammatory activity make it an interesting candidiate for neurological conditions involving inflammation like Alzheimer's disease. More research is needed to explore this use in detail.

+ Inflammatory Bowel Disease

The pathophysiology of Inflammatory Bowel Disease including both ulcerative colitis and crohns disease involves the leaking of luminal components into the lamina propria, resulting in significant inflammatory response involving TNF-a, IL-1, IL-6, IFN-y, and free radical components released from macrophages in the area. The main mechanism of treatment for this condition is to halt the inflammatory cascade happening within these tissues. [3, 7].

Acetyl-11-keto-fl-boswellic acid (AKBA) in Boswellia serrata has been shown to have marked 5-lipoxygenase (5-LOX), [5], and cyclooxygenase (COX-1) inhibitory activity [1].

Additionally, Boswellia serrata has been shown to have significant TNFα, IL-1β, NO and MAP kinase inhibitory activity [2].

 

Phytocheistry

  • Wellic acids (triterpenoids)
  • Pentacy-clic triterpene acids (beta-boswellic acid and acetyl-boswellic acids(acetyl-beta-boswellic acid, acetyl-11- keto-beta-boswellic acid (AKBA) and 11-keto-beta-boswellic acid)), tetracyclic triterpene acids.
  • Terpenols
  • Monosaccharides
  • Uronic acids
  • Sterols
  • Phlobaphenes
 

Clinical Applications Of Frankincense:

Frankincense is useful for most forms of inflammation, including inflammatory bowel conditions, oasteoarthritis, and vascular inflammation. It's aromatic component makes it reliable for relieving flatulence, bloating, and indigestion.

 

Cautions:

Some allergies have been reported.

 

Author

Justin Cooke, BHSc

The Sunlight Experiment

(Updated November 2018)

 

Recent Blog Posts:

References:

  1. Cao, H., Yu, R., Choi, Y., Ma, Z. Z., Zhang, H., Xiang, W., ... & van Breemen, R. B. (2010). Discovery of cyclooxygenase inhibitors from medicinal plants used to treat inflammation. Pharmacological research, 61(6), 519-524.

  2. Gayathri, B., Manjula, N., Vinaykumar, K. S., Lakshmi, B. S., & Balakrishnan, A. (2007). Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNFα, IL-1β, NO and MAP kinases. International immunopharmacology, 7(4), 473-482.

  3. Kühl, A. A., Erben, U., Kredel, L. I., & Siegmund, B. (2015). Diversity of intestinal macrophages in inflammatory bowel diseases. Frontiers in immunology, 6, 613.

  4. Honkanen, T., Mustonen, J., Kainulainen, H., Myllymiki, J., Collin, P., Hurme, M., & Rantala, I. (2005). Small bowel cyclooxygenase 2 (COX-2) expression in patients with IgA nephropathy. Kidney international, 67(6), 2187-2195.

  5. Sailer, E. R., Subramanian, L. R., Rall, B., Hoernlein, R. F., Ammon, H., & Safayhi, H. (1996). Acetyl‐11‐keto‐β‐boswellic acid (AKBA): structure requirements for binding and 5‐lipoxygenase inhibitory activity. British journal of pharmacology, 117(4), 615-618.

  6. Volta, U., Tovoli, F., Cicola, R., Parisi, C., Fabbri, A., Piscaglia, M., ... & Caio, G. (2012). Serological tests in gluten sensitivity (nonceliac gluten intolerance). Journal of clinical gastroenterology, 46(8), 680-685.

  7. Wakefield, A. J., Dhillon, A. P., Rowles, P. M., Sawyerr, A. M., Pittilo, R. M., Lewis, A. A. M., & Pounder, R. E. (1989). Pathogenesis of Crohn's disease: multifocal gastrointestinal infarction. The Lancet, 334(8671), 1057-1062.

Turmeric (Curcuma longa)

Turmeric is one of the oldest herbal medicines in the world. The benefits of turmeric are many, and its broad yet powerful actions have landed it among the most highly...

Tea (Camellia sinensis)

Camellia sinensis is the plant that brings us tea in all its many colors and flavors. It has a fairly high level of caffeine, and plenty of antioxidants. It makes a great tea for...

Wormwood (Artemisia absinthium)

Wormwood is commonly used to treat parasites, induce sweating to lower fevers, and is a central ingredient in making absinthe. The main constituent is thujone, which is...

Asian Ginseng (Panax ginseng)

Ginseng is a bit of a king amongst the herb world. It has a very long history of use, especially around China and Korea where it originated. It's used to promote longevity...

Cashew (Anacardium occidentale)

Cashew nuts are a great source of protein and trace minerals. The plant behind the cashew is even more useful as a medicine however. The leaves and bark can be used for...

Samambaia (Polypodium leucotomos)

Samambaia is a fern found growing in the Amazon rainforest. It's one of the best herbs around for treating skin and brain disorders. Especially psoriasis, vitiligo, and...

Ashwagandha (Withania somnifera)

Ashwaghanda is a well rounded, non-stimulating tonic herb. It's useful for strengthening a weak system caused by overstimulation and exhaustion. A perfect herb for...

Sarsaparilla (Smilax spp.)

Sarsaparilla is a root found growing all over the world. It has a long history of use in both China and the South American Amazon rainforest for much the same uses...

Muira Puama (Ptychopetalum olacoides)

Muira puama is an adaptogenic tree from the Amazon rainforest. Its main usage is for male impotence, but is aslo commonly used as a preventative supporting agent for Alzheimer's disease.