The Sunlight Experiment

View Original

What is Bioprospecting? Why is it Important?

Prior to the early 1940’s, death from infection was common.

Catch a bug like Pneumonia or Strep throat and you may very well have died from it.

Enter Alexander Fleming, the scientist who discovered the first antibiotic, penicillin. He didn’t create this compound however, he merely isolated it from a common mould, the type that you may find on old orange peels or bread.

Thanks to this medical advancement, death from infectious disease is no longer an issue for most people. This development came to us through a process known as bioprospecting.

There are many other examples of medicines that were sourced through the concept of bioprospecting, including chemotherapy drugs, pain medications, antidepressants, and even psychedelic drugs like LSD. Bioprospecting remains today an essential element of new drug discovery.

The Search For New Drugs

The human body is incredibly complex. This means that there are an unfathomable number of things that can go wrong with the human body. We’re constantly trying to search for new solutions to old problems, like our age-old war with cancer, as well as improvements to old medicines that have limited efficacy (like antidepressants, and seizure medications).

Additionally, drugs that were effective in the past, may no longer be effective today. A great example of this is antibiotics. These medications are essential for public health, but are losing their effectiveness as bacteria becomes resistant to their effects. This places a heavy burden on researchers to develop new drugs to replace them before it's too late and global outbreak occurs.

Finding new drug candidates is no easy task. The majority of drug research falls flat on its back despite years of hard work and rigorous testing.

Additionally, searching for new chemicals from scratch is like trying to find a needle in a haystack... while blindfolded with your hands tied behind your back. There are simply too many chemical combinations possible to brute force effective medicines.

This is why many scientists look for prospective new drugs from plants and fungi.

With a long history of use, and incredible chemical diversity, plants offer us a boost in drug discovery. Based on traditional uses, scientists can take a closer look at the active constituents of plants used for a certain condition. Based on these findings, these chemicals can then be isolated or synthesised to create new drugs.

Drug Development Is Driven By Patent Law

The pharmaceutical industry is notoriously cut-throat. The high cost of drug discovery and new drug development makes it important that the final profits produced from the drug remains in the hands of those who worked hard to create it. This is controlled by patent laws.

Patent laws are important. Let’s put ourselves in the shoes of these drug companies for just a moment. Imagine you spend 10 years and 100 million dollars developing a treatment for multiple sclerosis. The drug is completed and released… you can finally begin off-setting the insane development costs you spent making it.

Once the drug is released, however, other companies realise the usefulness of this medication, and begin manufacturing and selling it at a cheaper price. The reason they can sell it cheaper than you is because they didn’t dump 100 million dollars into its development like you did.

People begin to buy your competitors version of the drug over yours because it’s cheaper. All your hard work and investment of both time and money was for nothing.

This example is exactly what would happen without patent laws, and would be enough to completely halt future drug development. It wouldn’t be a sustainable business practice to spend all your money paving the way for all your competitors to profit from.

Patent laws ensure that the companies spending the time and money developing new, innovative drugs are entitled to the profits for the first 10 years following discovery. Due to the high cost required to produce these drugs, it’s necessary for these companies to justify spending this money to do it.

Tangent warning:

Many people will argue that developing new drugs to cure disease should be done regardless of cost and that locking in profits through patent laws is unethical. It’s important to remember that drug companies need to turn a profit in order to avoid bankruptcy. Profits are used for paying back the cost of drug discovery, as well as funding the development of new drugs. I’m not arguing that medicines shouldn’t be free for any inhabitant of earth, because I believe they should. However, the only way to achieve this is to transition from market driven drug development (pharmaceutical companies in the private sector) to government-funded development (aka higher taxes and less efficiency). We can weigh out the options of both but I don’t see how either one is much better than the other.

Searching For New Chemicals From Natural Sources

Plants, fungi, and animals are master chemists. In fact, life itself could be isolated down to a chemical reaction.

Whenever we add chemicals into our body, either from plants, animals, or man-made compounds, it’s going to have an effect in some way on our bodies natural chemical processes. The trick is to figure out which ones cause positive changes, and what the best way to use it is.

Plants offer a headstart in this search through traditional medical practices. We can identify a long list of herbal medicines for nearly any condition, in nearly any part of the world. From here we can begin the long and tedious process of sifting through it using the scientific method and high-tech chemical analysis to push this understanding even further.

Pharmacognosy & Plant Medicine Definitions

Medical ethnobotany:

The study of the traditional use of plants for medicinal purposes; Ethnopharmacology: The study of the pharmacological qualities of traditional medicinal substances

Pharmacognosy:

A branch of knowledge dealing with the use of medicinal ingredients from plants and animals.

Phytochemistry:

The medicinal use of plant extracts); and phytochemistry, the study of chemicals derived from plants (including the identification of new drug candidates derived from plant sources)

Zoopharmacognosy:

The process by which animals self-medicate, by selecting and using plants, soils, and insects to treat and prevent disease.

Marine pharmacognosy:

The study of chemicals derived from marine organisms.

Pharmacovigilance:

The constant checking and reassurance that drugs are safe and effective even after development has been completed.

Bioprospecting:

The search for medicinal or industrially relevant constituents from organic material.

Biopiracy:

The exploitation of genetic, or biochemically active constituents from plants, animals or fungi without adequate compensation to the community from which is originated.

Drugs Derived From Plants

Check out our recent article on 9 of the most famous drugs developed from plant based sources including Aspirin, Penicillin, Heroin and LSD.

See this content in the original post

The Process Of Bioprospecting & Drug Development

The process of drug development can take a very long time and is exceptionally expensive.

A recent paper investigating the development costs of cancer medications reported that the average spending was $648 million dollars, and 7.3 years.

The process is also not as direct as you might think. Although the development of the drug itself is usually performed by a pharmaceutical company with access to the tools and materials needed to create and test the drug, along with the marketing and legal channels to sell it.

The process actually starts elsewhere through the collaborative efforts of passionate independent researchers.

The Drug Development Process Through Bioprospecting

See this content in the original post

A Future Prospect

As our understanding of biochemistry, phytochemistry, and medical science improves. We’re identifying new potential candidates for new drugs at an ever increasing rate.

Dr Trudi Collet from Queensland University of Technology has apparently identified a native Australian medicinal plant species with compounds capable of effectively killing Zika virus. The plant species in question has not yet been named (see discussion on patents to understand why).

Developments with this research could lead to the development of drugs that can treat other members of the Zika virus family (Flaviviridae) such as dengue virus, West Nile Virus, and Hepatitis C virus.

See this content in the original post

Recent Blog Posts:

See this gallery in the original post

References:

  1. Veeresham, C. (2012). Natural products derived from plants as a source of drugs.

  2. Braun, L., & Cohen, M. (2015). Herbs and Natural Supplements, Volume 2: An Evidence-Based Guide (Vol. 2). Elsevier Health Sciences.