Cascara sagrada (Rhamnus purshiana)


Cascara Sagrada Summary

Cascara sagrada is primarily used for constipation.

The aged bark is exceptionally bitter — which stimulates the vagus nerve, liver, and digestive organs. As bile acids and pancreatic secretions begin moving in the gastrointestinal tract, it triggers the gastric mucosa to expand and contract. This is important to help foods move through the digestive tract.

Some of the active compounds in the herb (work by irritating the digestive mucosa — causing them to writhe and contract.

This herb needs to be used carefully — high doses can be very uncomfortable and result in serious harm.


+ Indications

  • Constipation (Acute and chronic)
  • Flatulence
  • Bloating
  • Abdominal fullness
  • Postprandial bloating
  • Dyspepsia
  • Weak gastric secretion
  • Anorexia
  • Itching skin
  • Headache (Due to constipation or intestinal weakness)
  • Haemorrhoids
  • Itching skin

+ Contraindications

  • Pregnancy or lactation
  • Intestinal obstruction
  • Intestinal inflammations (Crohn's disease, ulcerative colitis, appendicitis)
  • Children under the age of 12
  • Not appropriate for long term use

Herbal Actions:

  • Stimulating laxative
  • Cholagogue
  • Bitter digestive stimulant
  • Antiparasitic
  • Mild Laxative
  • Stomachic

What Is Cascara Sagrada Used For?

Cascara sagrada is mainly used as a lower bowel tonic for treating constipation.


Traditional Uses

Traditional use of cascara sagrada included: intestinal tonic, dyspepsia, constipation, digestion related headaches, to loosen stool for conditions such as haemorrhoids, rheumatism, biliary catarrh with jaundice, and chronic liver diseases [6].

Native Americans used cascara sagrada as a cathartic [6].


Herb Details: Cascara Sagrada

Weekly Dose

Part Used

Aged Bark

Family Name



North America

Follow Us On Social Media

Constituents of Interest

  • Anthrone glycosides
  • Anthraquinones
  • Aloins
  • Tannins

Common Names

  • Cascara sagrada
  • Buckthorn
  • Sacred bark
  • Californian buckthorn
  • Rhamnus purshiana
  • Frangula purshiana


  • Unknown


  • Unknown


  • contraindicated during pregnancy.


  • Unknown

Duration of Use

  • Avoid long-tem use.

Botanical Information

The Rhamnaceae (buckthorn) family of plants contains 55 genera, and 950 different species. This family has a wide distribution, especially throughout the tropics.


Harvesting Collection, and Preparation

The bark of cascara sagrada is harvested in spring and early summer. During this time it is easily peeled from the tree. It is then dried in the shade. Aged bark (3 years) is generally the preferred product, as the emetic effects lessen over this time and is much less likely to cause issues with griping and emesis [5].


Pharmacology & Medical Research

+ Anticancer

The anthraquinone emodin, contained within cascara sagrada and other herbs in its family (Rhamnaceae) as well as the families Liliaceae, and Leguminoseae, is an important medicinal constituent. It's similar in structure to anthracycline — which is a class of chemicals used in cancer chemotherapy. They work to intercalate the DNA of cancer cells. Similar antitumor antibiotics include daunorubicin and mitoxantrone. [7]. Emodin possesses many of these effects as well, with documented anti-proliferative [1-3], anti-angiogenic [8, 9], and radio-sensitizing/chemotherapy sensitizing actions on cancer cells [10-12]. It has even been found to reverse multidrug-resistant cancer cells [13].

Emodin has been shown to have a broad spectrum inhibitory action on such cancer cell lines as leukemia [14, 15], lung cancer [16-18], hepatic cancer [27-29], gallbladder cancer [21-23], pancreatic cancer [24-26], breast cancer [30-32], colon cancer [19, 20], and cervical cancer [33]. Most of this research has been conducted in China, and it should be noted that this chemical is contained within some of the most important and widely used traditional Chinese herbal medicines including Chinese rhubarb (Rheum palmatum) [34].

The anticancer actions of emodin have been suggested to be due to a variety of mechanisms such as the casein kinase Ⅱ and ERK1/2 pathways [7].

The bioavailability of this chemical is quite low, however, and has some toxicity in vivo as well [7]. It may yet prove useful in combination, as in the case of many Chinese formulas containing emodin containing botanicals, or may prove useful when administered via intravenous, or through modification of one of its side chains [7].

It was shown that with the addition of polyethyleneimine, sugar or heterocycle as side chains may actually improve the antitumor activity [35-37]. Rhamnus frangula has been found to have emodin-glycoside derivatives [38], some of which fit the earlier hypothesis, showing that these emodin glycoside derivatives (emodin with the addition of sugar chains) have a significantly higher antitumor activity than emodin, and have an improved bioavailability as well [39-41].

The emodin glycoside derivative EM-d-Rha, for example, has shown a 10 fold improvement in anti-proliferative activity and growth inhibition of cancer cells (HepG2 cells and OVCAR-3 cells). The mechanism of action for this chemical was suggested to be through induction of apoptosis via the intrinsic apoptotic signal pathway (release of apoptosis-inducing factors and Cytochrome C from mitochondria, followed by the activation of caspase-3) [7].

+ Antiviral

In an earlier study (1991) anthraquinones extracted from cascara sagrada were found to inhibit enveloped viruses from adsorption into a cell through an interaction with the viral envelope. Thus it was able to prevent its subsequent replication. [4].

+ Laxative

The laxative actions of cascara sagrada are reported to be from the hydroxyanthracene derivatives. They travel through the digestive tract unabsorbed to the large intestine where they are metabolized to form active aglycones. Here they exert laxative effects by a localized modification of intestinal motility via stimulation of intestinal muscle, and an accumulation of fluid. This occurs due to mediators such as prostaglandin release, and nitric oxide synthase production. [6].


Clinical Applications Of Cascara Sagrada:

Cascara sagrada is mainly used for constipation and as a tonic for poor bowel motility.



Caution adviced with this herb. Contraindicated with intestinal blockages and pregnancy.

Avoid Use During:

  • Pregnancy and lactation (only very small doses acceptable) [6]
  • Intestinal obstruction [6]
  • Intestinal inflammations such as: [6]
  • Chrons disease
  • Ulcerative colitis
  • Appendicitis
  • May cause bowel pigmentation
  • Do not use over 2 weeks without medical supervision [6]
  • Do not use fresh cascara sagrada. Severe vomiting, and intestinal spasm may occur [6].


Suggested synergy with boldo for digestive complaints such as constipation, flatulence, and abdominal fullness [6].

Combine with rhubarb, boldo, and gentian for dyspepsia [6].



Justin Cooke, BHSc

The Sunlight Experiment

(Updated November 2018)


Recent Blog Posts:


  1. Han YM, Lee SK, Jeong DG, Ryu SE, Han DC, Kim DK. (2012). Emodin inhibits migration and invasion of DLD-1(PRL-3) cells via inhibition of PRL-3 phosphatase activity. Bioorg Med Chem Lett. 22: 323–326, doi: 10.1016/j.bmcl.2011.11.008 PMID: 22137788 2.

  2. Manu KA, Shanmugam MK, Ong TH, Subramaniam A, Siveen KS, Perumal E. (2013). Emodin suppresses migration and invasion through the modulation of CXCR4 expression in an orthotopic model of human hepatocellular carcinoma. PLoS One. 8(3):e57015. doi: 10.1371/journal.pone.0057015 PMID: 23472074 3.

  3. Ok S, Kim SM, Kim C, Nam D, Shim BS, Kim SH. (2012). Emodin inhibits invasion and migration of prostate and lung cancer cells by down regulating the expression of chemokine receptor CXCR4. Immunopharmacol Immunotoxicol. 34(5):768–78. doi: 10.3109/08923973.2012.654494 PMID: 22299827

  4. Sydiskis, R. J., Owen, D. G., Lohr, J. L., Rosler, K. H., & Blomster, R. N. (1991). Inactivation of enveloped viruses by anthraquinones extracted from plants. Antimicrobial Agents and Chemotherapy, 35(12), 2463-2466. doi:10.1128/aac.35.12.2463

  5. A Modern Herbal. (1931). Buckthorn (Californian). Retrieved from

  6. Bone, K. (2003). A clinical guide to blending liquid herbs: Herbal formulations for the individual patient. Edinburgh [u.a.: Churchill Livingstone. (Pg. 127-129).

  7. Xing, J., Song, G., Deng, J., Jiang, L., Xiong, P., Yang, B., & Liu, S. (2015). Antitumor Effects and Mechanism of Novel Emodin Rhamnoside Derivatives against Human Cancer Cells In Vitro. PLOS ONE, 10(12), e0144781. doi:10.1371/journal.pone.0144781

  8. Xin-hua Wang, Shu-ying Wu, Yong-su Zhen. (2004). Inhibitory effects of emodin on angiogenesis. Yao Xue Xue Bao. 39(4):254–258. PMID: 15303652 8.

  9. Kaneshiro T, Morioka T, Inamine M, Kinjo T, Arakaki J, Chiba I. (2006). Anthraquinone derivative emodin inhibits tumor-associated angiogenesis through inhibition of extra-cellular signal-regulated kinase 1/2 phosphorylation.Eur J Pharmacol. Eur J Pharmacol. 553 (1–3):46–53. PMID: 17056031

  10. Subramaniam A, Loo SY, Rajendran P, Manu KA, Perumal E, Li F. (2013). An anthraquinone derivative, emodin sensitives hepatocellular carcinoma cells to TRAIL induced apoptosis through the induction of death receptors and downregulation of cell survival protein. Apoptosis. 18(10):1175–87. doi: 10.1007/s10495-013-0851-5 PMID: 23700228

  11. Zhang W, Chen H, Liu DL, Li H, Luo J, Zhang JH. (2013). Emodin sensitizes the gemcitabine-resistant cell line Bxpc- 3/Gem to gemcitabine via downregulation of NF-κB and its regulated targets. Int J Oncol. 42(4):1189–96. doi: 10.3892/ijo.2013.1839 PMID: 23440366

  12. Ko JC, Su YJ, Lin ST, Jhan JY, Ciou SC, Cheng CM. (2010). Emodin enhances cisplatin- induced cytotoxicity via down- regulation of ERCC1 and inactivation of ERK1/2. Lung Cancer. 69(2):155– 64. doi: 10.1016/j.lungcan.2009.10.013 PMID: 19962780

  13. Chen H, Wei W, Guo Y, Liu A, Tong H, Wang Z, (2011). Enhanced effect of gemcitabine by emodin against pancreatic cancer in vivo via cytochrome C-regulated apoptosis. Oncol Rep. 25 (5):1253–61. doi: 10.3892/or.2011.1174

  14. Muto A, Hori M, Sasaki Y, Saitoh A, Yasuda I, Maekawa T, (2007). Emodin has a cytotoxic activity against human multiple myeloma as a Janus-activated kinase 2 inhibitor. Mol Cancer Ther. 6 (3):987–94. PMID: 17363492

  15. Chun-Guang W, Jun-Qing Y, Bei-Zhong L, Dan-Ting J, Chong W, Liang Z, (2010). Anti- tumor activity of emodin against human chronic myelocytic leukemia K562 cell lines in vitro and vivo. Eur J Pharmacol. Eur J Pharmacol. 627(1–3):33–41. doi: 10.1016/j.ejphar.2009.10.035 PMID: 19857484

  16. Lai JM, Chang JT, Wen CL, Hsu SL. (2009). Emodin induces a reactive oxygen species- dependent and ATMp53-Bax mediated cytotoxicity in lung cancer cells. Eur J Pharmacol. 623(1–3):1–9. doi: 10.1016/j.ejphar.2009.08.031 PMID: 19744477

  17. Ko JC, Su YJ, Lin ST, Jhan JY, Ciou SC, Cheng CM, (2010). Suppression of ERCC1 and Rad51 Expression through ERK1/2 Inactivation is Essential in Emodin-Mediated Cytotoxicity in Human Non-Small Cell Lung Cancer Cells. Biochem Pharmacol. 79(4):655–64. doi: 10.1016/j.bcp.2009.09. 024 PMID: 19799875

  18. Lin He, Juanjuan Bi, Qian Guo, Yin Yu, Xiufeng Ye, Wei Li. (2011). Emodin down-regulatesERCC1 and Rad51 and inhibits proliferation in non-small cell lung cancer cells. J Third Mil Univ. 33(22):2370–2375.

  19. Ma YS, Weng SW, Lin MW, Lu CC, Chiang JH, Yang JS, (2012). Antitumor effects of emodin on LS1034 human colon cancer cells in vitro and in vivo: roles of apoptotic cell death and LS1034 tumor xeno grafts model. Food Chem Toxicol. 50(5):1271–8. doi: 10.1016/j.fct.2012.01.033 PMID: 22321733

  20. Damodharan U, Ganesan R, Radhakrishnan UC. (2011). Expression of MMP2 and MMP9 (gelatinases A and B) in human colon cancer cells. Appl Biochem Biotechnol. 165(5–6):1245–52. doi: 10.1007/ s12010-011-9342-8 PMID: 21866366

  21. Wang W, Sun YP, Huang XZ, He M, Chen YY, Shi GY, (2010). Emodin enhances sensitivity of gallbladder cancer cells to platinum drugs via glutathion depletion and MRP1 downregulation. Biochem Pharmacol. 2010 Apr 15; 79(8):1134–40. doi: 10.1016/j.bcp.2009.12.006 PMID: 20005210

  22. Li XX, Dong Y, Wang W, Wang HL, Chen YY, Shi GY, (2013). Emodin as an effective agent in targeting cancer stem- like side population cells of gallbladder carcinoma. Stem Cells Dev. 22 (4):554–66. doi: 10.1089/scd.2011.0709 PMID: 22974371

  23. Li XX, Wang J, Wang HL, Wang W, Yin XB, Li QW, (2012). Characterization of cancer stem-like cells derived from a side population of a human gallbladder carcinoma cell line, SGC-996. Biochem Biophys Res Commun. 419(4):728–34. doi: 10.1016/j.bbrc.2012.02.090 PMID: 22387537

  24. Liu JX, Zhang JH, Li HH, Lai FJ, Chen KJ, Chen H, (2012). Emodin induces Panc-1 cell apoptosis via declining the mitochondrial membrane potential. Oncol Rep. 28(6): 1991–6. doi: 10.3892/or. 2012.2042 PMID: 22992976

  25. Liu A, Chen H, Wei W, Ye S, Liao W, Gong J, (2011). Antiproliferative and antimetastatic effects of emodin on human pancreatic cancer. Oncol Rep. 26(1):81–9. doi: 10.3892/or.2011.1257 PMID: 21491088

  26. Liu DL, Bu H, Li H, Chen H, Guo HC, Wang ZH, (2012). Emodin reverses gemcitabine resistance in pancreatic cancer cells via the mitochondrial apoptosis pathway in vitro. Int J Oncol. 40(4):1049– 57. doi: 10.3892/ijo.2011.1285 PMID: 22159556

  27. Hsu CM, Hsu YA, Tsai Y, Shieh FK, Huang SH, Wan L, (2010). Emodin inhibits the growth of hepatoma cells: finding the common anti-cancer pathway using Huh7, Hep3B, and HepG2 cells. Biochem Biophys Res Commun. 392(4):473–8. doi: 10.1016/j.bbrc.2009.10.153 PMID: 19895793

  28. Cai J, Niu X, Chen Y, Hu Q, Shi G, Wu H, (2008). Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis. Neoplasia. 10(1):41– 51. PMID: 18231637

  29. Cha TL, Qiu L, Chen CT, Wen Y, Hung MC. (2005). Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res. 65(6):2287–95. PMID: 15781642

  30. Huang Z, Chen G, Shi P. (2008). Emodin-induced apoptosis in human breast cancer BCap-37 cells through the mitochondrial signaling pathway. Arch Pharm Res. 31(6): 742–8. doi: 10.1007/s12272-001- 1221-6 PMID: 18563356

  31. Huang Z, Chen G, Shi P. (2009). Effects of emodin on the gene expression profiling of human breast carcinoma cells. Cancer Detect Prev 32: 286–291, doi: 10.1016/j.cdp.2008.12.003 PMID: 19185431

  32. Wang S, Chen T, Chen R, Hu Y, Chen M, Wang Y. (2012). Emodin loaded solid lipid nanoparticles: preparation, characterization and antitumor activity studies. Int J Pharm. 430(1–2):238–46. doi: 10. 1016/j.ijpharm.2012.03.027 PMID: 22465546

  33. Yaoxian W, Hui Y, Yunyan Z, Yanqin L, Xin G, Xiaoke W. (2013). Emodin induces apoptosis of human cervical cancer hela cells via intrinsic mitochondrial and extrinsic death receptor pathway. Cancer Cell Int. 13(1):71. doi: 10.1186/1475-2867-13-71 PMID: 23866157

  34. The Sunlight Experiment. (2016, August). The Sunlight Experiment. Retrieved August 2, 2016, from

  35. Yan YY, Fu LW, Zhang W, Ma HS, Ma CG, Liang YJ, (2014). Emodin azide methyl anthraquinone derivative induced G0/ G1 arrest in HER2/neu-overexpressing MDA- MB-453 breast cancer cells. J BUON. 19(3):650–5.

  36. Yan Y, Su X, Liang Y, Zhang J, Shi C, Lu Y, (2008). Emodin azide methyl anthraquinone derivative triggers mitochondrial-dependent cell apoptosis involving in caspase-8- mediated Bid cleavage. Mol Cancer Ther. 7(6):1688–97. doi: 10.1158/1535-7163.MCT-07-2362 PMID: 18566240

  37. Li J, Chen Y, Chen B, Chen C, Qiu B, Zheng Z, (2015). Inhibition of 32Dp210 cells harboring T315I mutation by a novel derivative of emodin correlates with down-regulation of BCR-ABL and its downstream signaling pathways. J Cancer Res Clin Oncol. 141(2):283–93. doi: 10.1007/s00432-014- 1820-2

  38. Wagner H, Demuth G. (1974). Investigations of the anthrachinone-glycosides from Rhamnus frangula L. 3. 6-O (D-apiofuranosyl)-1,6,8-trihydroxy-3-methyl-anthrachinone, a new glycoside (frangulin B) from the bark of Rhamnus frangula L. (author's transl). Z Naturforsch C. 29(5):204–8.

  39. Lin C, Chung M, Lu C. (1990). Anthraquinones From Rhamnus Formosana[J]. Phytochemistry. 29 (12):3903–3905.

  40. Lin CN, Chung MI, Gan KH, Lu CM. (1991). Flavonol and anthraquinone glycosides from Rhamnus formosana. Phytochemistry. 30(9):3103–6. PMID: 1367798

  41. Mai LP, Guéritte F, Dumontet V, Tri MV, Hill B, Thoison O, (2001). Cytotoxicity of Rhamnosylanthraquinones and Rhamnosylanthrones From Rhamnus Nepalensis[J]. J Nat Prod. 64(9):1162–8. PMID: 11575949