infectious

Black Horehound (Ballota nigra)

black-horehound.jpg

What is Black Horehound?

Black horehound is best known for its offensive odour — which resembles stale sweat.

Despite the unfortunate smell of this mint-relative, it has a lot to offer therapeutically.

Black horehound is one of the oldest medicinal herb species from Europe. It has a long history of use for infectious diseases including rabies and parasites, as well as for nausea and vomiting caused by neurological disorders.

This herb is a bit of a jack of all trades — but master of none. It offer reliable nervine, antispasmodic, antimicrobial, and anticholesterolaemic effects — all thanks to five unique phenylpropanoid glycosides contained in the leaves, stems, and roots of the herb.

 

What is Black Horehound Used For?

Many of the tradition uses of the herb have yet to be validated. The primary traditional uses for the herb that still stand today are for treating motion sickness or other causes of nausea or vomiting of neurological origin.

This herb is also still used as an antimicrobial for the digestive tract and topically on the skin.

Newer applications for the herb are aimed towards high cholesterol levels and diabetes.

 

Traditional Uses of Black Horehound

Black horehound was used for a lot of different applications. It was also a common remedy for motion sickness or any vomiting caused by neurological origins (rather than digestive).

Topically, the leaves were used to treat wounds, burns, and infection. Some herbalists even gave the herb as an enema for parasitic worms.

In Europe, where the herb originated from, the flowering tops were used to treat rabies after getting bitten by a rabid dog.

 

Herb Details: Black Horehound

Herbal Actions:

  • Antibacterial
  • Anticholesterolaemic
  • Antiemetic
  • Antifungal
  • Antioxidant
  • Antiprotozoal
  • Antispasmodic
  • Expectorant
  • Hypoglycaemic
  • Nervine
  • Sedative

Weekly Dose

Part Used

Flowering Tops

Family Name

Lamiaceae

Distribution

Europe & North America

Constituents of Interest

  • Verbascoside
  • Forsythoside B
  • Arenarioside
  • Ballotetroside
  • Malic Acid

Common Names

  • Black Horehound
  • Black Stinking Horehound
  • Fetid Horehound
  • Stinking Roger

CYP450

  • Unknown

Pregnancy

  • Avoid black horehound if pregnant or breastfeeding

Duration of Use

  • insert

Botanical Information

Black horehound originated from Europe but is now widespread across North America as well. The herb can grow over 1 meter tall and tends to grow on the side of the road in rural areas.

What this plant is best known for is its disagreeable odor — which can be described as stale sweat. The Greek name, ballo translates to “getting rid of”, or “throwing away”. This smell protects the herb by repelling both animals and humans.

black-horehound-flowers.jpg
 

Pharmacology & Medical Research

+ Anticholesterolaemic

One of the major causes of atherosclerosis is the result of oxidization of low-density lipoproteins LDL) [1].

Some of the phenolic compounds in black horehound (verbascoside, forsythoside B, arenarioside, and ballotetroside) were found to inhibit LDL oxidation through Cu2+ pathway [2].

+ Antimicrobial

Five phenolic compounds from black horehound were investigated to explore their antimicrobial potential. Of these five, three (verbascoside, forsythoside B, arenarioside) were found to have moderate activity against Proteus mirabilis, Salmonella typhi, and Staphylococcus aureus [3, 4].

Another study looked at the antimicrobial effects of each part of the plant (leaves, roots, and stems). The results suggested the crude extract of the roots had the best inhibitory activity on the strains tested (Enterococcus faecalis, Escherichia coli, Klensiella pneumonia, Proteus miribalis, Salmonella typhi, and Staphylococcus aureus, Aspergillus fumigates, Aspergillus niger, Fusarium solani, and Leishmania) [5]. The leaf and stem chloroform extracts had similar antimicrobial action.

+ Sedative

Phenylpropanoid compounds from black horehound were found to bind to benzodiazepine, dopaminergic, and morphinic receptors in animals [6, 4]. This provides a mechanism of action for the traditional sedative uses of the herb — but more research is needed to further elucidate these findings.

 

Phytochemistry

The flowering tops (the part used medicinally) are rich in diterpenoid lactones (labdane type) — such as ballotenol, ballotinone, 7alpha-acetoxymarrubiin, hispanolone, and preleosibirin.

The tops are also rich in phenolic compounds (luteolin-7-lactate, luteolin-7-glucosyl-lactate), phenylpropanoid glycosides (verbascoside, forsythoside B, arenarioside, ballotetroside), organic acids (quinic acid), and volatile oils.

 

Cautions & Safety Information:

Black horehound is considered a safe herb, with little chances of experiencing any side effects.

Allergies to the herb have been noted, so caution is advised if using the herb for the first time. Always start with a small amount first to see how you react before using a full dose.

Black horehound may interact with the following medication classes:

  • Antipsychotic medications (overlap in receptor activation)

  • Anti-Parkinson’s disease medications (overlap in dopaminergic action)

  • Sedatives (overlap in sedative effects and benzodiazepine receptor activation)

  • Iron supplements (black horehound has been suggested to prevent the absorption of iron)

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated March 2020)

 

Recent Blog Posts:

Featured Herb Monographs

 

References:

[1] — Steinberg, D. (1997). Low density lipoprotein oxidation and its pathobiological significance.

[2] — Seidel, V., Verholle, M., Malard, Y., Tillequin, F., Fruchart, J. C., Duriez, P., ... & Teissier, E. (2000). Phenylpropanoids from Ballota nigra L. inhibit in vitro LDL peroxidation.

[3] — Didry, N., Seidel, V., Dubreuil, L., Tillequin, F., & Bailleul, F. (1999). Isolation and antibacterial activity of phenylpropanoid derivatives from Ballota nigra.

[4] — Al-Snafi, A. E. (2015). The Pharmacological Importance of Ballota nigra–A review.

[5] — Ullah, N., Ahmad, I., & Ayaz, S. (2014). In vitro antimicrobial and antiprotozoal activities, phytochemical screening and heavy metals toxicity of different parts of Ballota nigra.

[6] — Daels-Rakotoarison, D. A., Seidel, V., Gressier, B., Brunet, C., Tillequin, F., Bailleul, F., ... & Cazin, J. C. (2000). Neurosedative and antioxidant activities of phenylpropanoids from Ballota nigra.

Cryptolepis (Cryptolepis sanguinolenta)

cryptolepis.jpg

What is Cryptolepis?

Cryptolepis is a potent antibmicrobial herb originating from Africa and Southeast Asia. It’s become one of the go-to herbal species for treating resistant bacteria and malaria.

The active constituents of the plant are a group of alkaloids, each of which have been proven effective against a wide variety of bacterial, mycobacterial, fungal, and parasitic organisms (specific strains listed below).

The roots also contain a rich yellow pigment that makes the herb useful for dying fabrics and leather a deep yellow color.

 

What is Cryptolepis Used For?

Cryptolepis is almost exclusively used as an antimicrobial against parasitic, bacterial, amoebic, and fungal infections. This herb is very useful for infections of all kinds. It’s a popular herb for digestive disorders and infection, topically for skin infections, or orally for urinary tract infections.

Outside of medicine cryptolepis is used as a source of yellow dye — lending to one of its common names, yellow dye root.

 
Brewing a Decoction of Cryptolepis

Brewing a Decoction of Cryptolepis

Traditional Uses of Cryptolepis

+ Africa

Cryptolepis originates from Africa, where it was primarily used to treat malaria, amoebic dysentery, and both urinary and respiratory infection.

The herb’s success with malaria patients is what made the plant so popular today, and there is now large plots of land dedicated to its cultivation to meet the demand for the herb within Africa, as well as elsewhere in the world.

+ Asia & Indonesia

A closely related species — Cryptolepis buchanii — grows throughout Indonesia, Thailand, China, India, and Nepal.

This species was used in Thailand for treating systemic inflammation, arthritis, and muscle pain.

In India, this species was used to treat diarrhea, bacterial infection, ulcers, and for treating rickets in children.

 

Herb Details: Cryptolepis

Herbal Actions:

  • Antiamoebic
  • Antibacterial
  • Anticancer
  • Antifungal
  • Anti-inflammatory
  • Antiparasitic
  • Antipyretic
  • Antiviral (Mild)

Weekly Dose

Part Used

Roots

Family Name

Apocynaceae

Distribution

Africa & Southeast Asia

Constituents of Interest

  • Cryptolpine
  • Norcyptolepine
  • Cryptospirolepine
  • Isocryptolepine

Common Names

  • Cryptolepis
  • Yellow Dye Root
  • Delboi
  • Gangamau
  • Ghanian Quinine
  • Kadze
  • Koli Mekari
  • Kpokpo-Yangolei
  • Nibima
  • Nombon
  • Nurubima
  • Ouidoukoi
  • Paran Pupa

CYP450

  • Unknown

Pregnancy

  • Avoid cryptolepis if pregnant or breastfeeding

Duration of Use

  • High-dose use of cryptolepis (4-6mL per day) should be limited to 60 days. Low-doses (1-2 mL per day) is considered safe for long-term use.

Botanical Information

Cryptolepis is a member of the Apocynaceae (dogbane) family — which contains roughly 348 genera of trees, shrubs, vines, and herb succulents. members of this family can be found throughout the tropics.

Another notable species in this family is Vinca major (periwinkle)

Most of the species in this family grow in dense tropical rainforests, but a select few prefer harsh, dry environments — including cryptolepis, which prefers dry savanah forests. You’re more likely to find the herb growing near a source of water, however.

You can find cryptolepis wild in dry grassy or forested regions from Senegal east to Nigeria. The plant can also be found sporatically in Camaroon and the Congo.

Some related species grow in Australia as well.

Within the cryptolepis genus there are roughly 42 species — with the primary studied species being Cryptolepis sanguinolenta.

cryptolepis-leaves.jpg
 

Cultivation, Harvesting & Preparation

Both the roots and stems of the plant have been used as medicine, but the roots contain nearly twice as much of the active alkaloids than the stem — so most people tend to just use the roots instead.

 

Pharmacology & Medical Research

+ Antibacterial

Cryptolepis is well-known for its antibacterial activity — and is considered by many herbalists to be one of the most reliable systemic antimicrobial herbs available.

Cryptolepis has been tested agains many different strains of bacteria, amoeba, fungi, parasites, and virus.

The most active inhibitory effects of the herb are towards bacteria and parasites, with mild anti-fungal and antiviral activity.

These alkaloids work by inhibiting growth, breaking down cell membranes (lysis), causing morphological changes to the cell, and direct bactericidal activities [1, 2, 3].

One study in particular tested the effects of various cryptolepis extracts (water, ethanol, petroleum ether, chloroform, and ethyl acetate extracts) agains antibiotic-resistant bacteria [1]. The herb was effective agains 75% of the strains tested.

The study found cryptolepis extracts to be effective against the following bacteria:

  • Staphylococcus saprophyticus

  • Staphylococcus aureus

  • Salmonella typhi

  • Proteus mirabilis

  • Excherichia coli

  • Proteus mirabilis

  • Pseudomonas aeruginosa

  • Klebsiella pneumoniae

Cryptolepis has also been shown to inhibit other organisms, including:

  • Neisseria gonorrhoeae [4]

  • Shigella dysenteriae [2]

  • Salmonella typhimurium [2]

  • Vibrio cholerae [2]

  • Enterococcus faecalis [2]

  • Campylobacter jejuni (65 strains) [5]

  • Campylobacter coli (41 strains) [5]

  • Bacillus cerues [7]

  • Streptococcus pyogenes [7]

  • Enterobacter cloacae [7]

  • Klebsiella pneumonia [7]

  • Proteus vulgaris [7]

  • Mycobacterium fortuitum [6]

  • Mycobacterium phlei [6]

  • Mycobacteriumaurum [6]

  • Mycobacterium smegmatis [6]

  • Mycobacterium bovis [6]

  • Mycobacterium abcessus [6]

The herbs effectiveness agains Escherichia coli, Proteus miribalis, and Staphylococcus saprophyticus provide a mechanism of action for the herbs traditional uses for urinary tract infection.

it should be noted that in most of the studies cited above, the ethanolic extract was by far the most effective. Water extracts were the least effective overall unless decocted for several hours.

+ Antifungal

Many of the same alkaloids active agains bacterial strains are also effective agains fungal infection.

Cryptolepine and neocryptolepine have both been shown to have antifungal activity against the following species:

  • Candida albicans [7]

  • Aspergillus niger [4]

  • Microsporum canis [7]

  • Epidermophyton floccosum [7]

  • Trichopyton rubrum [7]

  • Trichopyton mentagrophytes [7]

  • Saccharomyces cerevisiae [7]

+ Anti-Parasitic

This herb has a long history of use for malaria and other parasitic infections. As a result, there’s ben a lot of study to elucidate these effects further.

A preclinical trial using an aqueous extract of the root found the herb, as well as isolated fractions of cryptolepine and isocryptoleopine had direct antiplasmoidial activity [8]. I’s important to note that all strains of plasmodium falciparum used in this study were already resistant to chloroquine — suggesting alternate mechanisms for cryptolepine and isocryptolepines antimalarial effects.

These results have been replicated at least four more times using different alkaloid fractions of the plant, different administration methods (injection), and different strains of plasmodium — all showed varying levels of improvement from the application of cryptolepis [8, 9, 10].

One study noted a synergistic effect against plasmodium falciparum and Plasmodium berghei with artimisinins — which is a compound found in the Artemesia annua (Qing Hao). These same results were noted from a semi-synthetic analog of artemisinin called artesunate without producing any toxic side effects. [11].

Clinical Trials

In one trial [12], 44 patients with uncomplicated malaria were given cryptolepis root tea (2.5 gram equivalent) three times per day for five days. The effects were considered positive if the parasites were undetectable in the blood by day seven, and remained undetectable at a 28 day followup.

By the end of the study, 50% of patients were considered cleared of malaria after 2 days of treatment. Chills, vomiting, and nausea were cleared in all patients by day three. By the end of the trial, 93.5% of patients had undetectable levels of plasmodium in the blood, and no symptoms. These improvements are consistent with the pharmaceutical application chloroquine.

 

Phytochemistry

The primary group of medicinal compounds in cryptolepis are the alkaloids. The primary active alkaloids in the herb include:

  • Cryptolepine (the primary bioactive compound)

  • Norcryptolepine

  • Cryptospirolepine

  • Isocryptolepine

  • Hydroxycryptolepine

  • Cryptoheptine

  • Biscryptolepine

  • Neocryptolepine

  • Cryptoquindoline

The primary active ingredient is cryptolepine — which is also the primary ingredient in another well-known systemic antimicrobial plant, Sida (Sida acuta).

Cryptolepine is an indoloquinoline alkaloid with significant antimicrobial activity. This compound has been shown to have direct antimalarial, antibacterial, anticancer, antipyretic, and anti-inflammatory activities [2, 13, 14, 15].

A separate alkaloid, cryptohepine, has also been shown to posess significant antibacterial activity against both gram-negative and gram-positive bacteria [5, 20]. Other alkaloids including neocryptolepine and biscryptolepine have also shown activity agains gram-positive bacteria, but aren’t as well studied as cryptohepine or cryptolepine. Neocryptine is reported to provide more bacteriostatic activity than bacteriocidal [7].

 

Cautions & Safety Information:

Cryptolepis has been used for thousands of years without any evidence of toxic side effects. One clinical trial gave patients 80 mL of cryptolepis extract for six days (a very high dose), with no side effects reported [16].

in rats, the LD50 of cryptolepis was over 5000 mg/kg — an incredibly potent dose [17, 18].

Some mild side effects have been noted when using isolated cryptolepis alkaloids that aren’t noted in whole-plant extracts. Side effects from this may include a rise in ALP and uric acid [12].

One animal study found cryptolepis leaf extract resulted in a decreased sperm count in rats [19].

Avoid using cryptolepis in combination with antidiabetic medications and central nervous system depressants (such as phenobarbitone).

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated March 2020)

 

Recent Blog Posts:

Featured Herb Monographs

 

References:

[1] — Mills-Robertson, F. C., Tay, S. C., Duker-Eshun, G., Walana, W., & Badu, K. (2012). In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta. Annals of clinical microbiology and antimicrobials, 11(1), 16.

[2] — Paulo, A., Duarte, A., & Gomes, E. T. (1994). In vitro antibacterial screening of Cryptolepis sanguinolenta alkaloids. Journal of ethnopharmacology, 44(2), 127-130.

[3] — Sawer, I. K., Berry, M. I., & Ford, J. L. (2005). The killing effect of cryptolepine on Staphylococcus aureus. Letters in applied microbiology, 40(1), 24-29.

[4] — Boakye-Yiadom, K. (1979). Antimicrobial properties of some West African medicinal plants II. Antimicrobial activity of aqueous extracts of Cryptolepis sanguinolenta (Lindl.) Schlechter. Quarterly Journal of Crude Drug Research, 17(2), 78-80.

[5] — Paulo, A., Pimentel, M., Viegas, S., Pires, I., Duarte, A., Cabrita, J., & Gomes, E. T. (1994). Cryptolepis sanguinolenta activity against diarrhoeal bacteria. Journal of ethnopharmacology, 44(2), 73-77.

[6] — Gibbons, S., Fallah, F., & Wright, C. W. (2003). Cryptolepine hydrochloride: a potent antimycobacterial alkaloid derived from Cryptolepis sanguinolenta. Phytotherapy Research, 17(4), 434-436.

[7] — Cimanga, K., De Bruyne, T., Pieters, L., Totte, J., Tona, L., Kambu, K., ... & Vlietinck, A. J. (1998). Antibacterial and antifungal activities of neocryptolepine, biscryptolepine and cryptoquindoline, alkaloids isolated from Cryptolepis sanguinolenta. Phytomedicine, 5(3), 209-214.

[8] — Grellier, P., Ramiaramanana, L., Millerioux, V., Deharo, E., Schrével, J., Frappier, F., ... & Pousset, J. L. (1996). Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from Cryptolepis sanguinolenta. Phytotherapy Research, 10(4), 317-321.

[9] — Cimanga, K., De Bruyne, T., Pieters, L., Vlietinck, A. J., & Turger, C. A. (1997). In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. Journal of natural products, 60(7), 688-691.

[10] — Whittell, L. R., Batty, K. T., Wong, R. P., Bolitho, E. M., Fox, S. A., Davis, T. M., & Murray, P. E. (2011). Synthesis and antimalarial evaluation of novel isocryptolepine derivatives. Bioorganic & medicinal chemistry, 19(24), 7519-7525.

[11] — Forkuo, A. D., Ansah, C., Boadu, K. M., Boampong, J. N., Ameyaw, E. O., Gyan, B. A., ... & Ofori, M. F. (2016). Synergistic anti-malarial action of cryptolepine and artemisinins. Malaria journal, 15(1), 89.

[12] — Bugyei, K. A., Boye, G. L., & Addy, M. E. (2010). Clinical efficacy of a tea-bag formulation of Cryptolepis sanguinolenta root in the treatment of acute uncomplicated falciparum malaria. Ghana medical journal, 44(1).

[13] — Ntie-Kang, F., Lifongo, L. L., Simoben, C. V., Babiaka, S. B., Sippl, W., & Mbaze, L. M. A. (2014). The uniqueness and therapeutic value of natural products from West African medicinal plants. Part I: uniqueness and chemotaxonomy. RSC Advances, 4(54), 28728-28755.

[14] — Bierer, D. E., Fort, D. M., Mendez, C. D., Luo, J., Imbach, P. A., Dubenko, L. G., ... & Zhang, P. (1998). Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. Journal of medicinal chemistry, 41(6), 894-901.

[15] — Paulo, A., Gomes, E. T., & Houghton, P. J. (1995). New alkaloids from Cryptolepis sanguinolenta. Journal of Natural Products, 58(10), 1485-1491.

[16] — Luo, J., Fort, D. M., Carlson, T. J., Noamesi, B. K., nii‐Amon‐Kotei, D., King, S. R., ... & Waldeck, N. (1998). Cryptolepis sanguinolenta: an ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycaemic agent. Diabetic medicine, 15(5), 367-374.

[17] — Ansha, C., & Mensah, K. B. (2013). A review of the anticancer potential of the antimalarial herbal Cryptolepis sanguinolenta and its major alkaloid cryptolepine. Ghana medical journal, 47(3), 137-147.

[18] — Ansah, C., Mfoafo, E. A., Woode, E., Opoku-Okrah, C., Owiredu, W. K. B. A., & Duwiejua, M. (2008). Toxicological evaluation of the anti-malarial herb Cryptolepis sanguinolenta in rodents. J Pharmacol Toxicol, 3, 335-43.

[19] — Ajayi, A. F., & Akhigbe, R. E. (2012). Antifertility activity of Cryptolepis sanguinolenta leaf ethanolic extract in male rats. Journal of human Reproductive sciences, 5(1), 43.

[20] — Paulo, A., Gomes, E. T., Steele, J., Warhurst, D. C., & Houghton, P. J. (2000). Antiplasmodial activity of Cryptolepis sanguinolenta alkaloids from leaves and roots. Planta medica, 66(01), 30-34.

Horopito (Pseudowintera colorata)

horopito.jpg

What is Horopito?

Horopito is commonly known as New Zealand pepperwood for its mild spicy flavor and exclusivity to the cooler islands of the south pacific ocean — including New Zealand.

This herb has a lot of traditional uses as medicine but went largely noticed by the international herbal medicine community. Recently there’s been a surge in interest in the plant after a series of studies were done to assess the medical value of traditional New Zealand herbs.

Horopito is used for skin and digestive conditions largely due to the plant’s potent antifungal actions. This plant has been shown to kill candida, as well as a number of parasitic worms.

The mild spicy nature of the plant also brings some circulatory stimulant and analgesic activity.

This plant has a lot of practical applications, especially for infectious fungal or parasitic conditions. It’s likely this plant will become much more commonplace in western herbal medicine within the next 5 to 10 years.

 

What is Horopito Used For?

The primary uses of horopito in modern herbal medicine is for fungal, bacterial, and parasitic infections.

A liquid extract of the herb is the most common form used today, but you can also find capsules and topical applications of the herb. For skin infections, such as ringworm or eczema, a poultice of the leaves can be applied directly, but a liniment is more common as the plant can be difficult to grow outside New Zealand.

 

Traditional Uses of Horopito

The Maori of New Zealand have been using horopito for a long time and have a long list of applications for its leaves.

The Maori use horopito in the following ways:

  • As a flavoring agent (spicy flavor profile)

  • For sexually transmitted infection

  • Ringworm

  • Chaffed or damaged skin

When the early Europeans colonized New Zealand many of them began using the herb as a source of vitamin C to prevent or treat scurvy.

Herb Details: Horopito

Herbal Actions:

  • Analgesic
  • Anti-Allergy
  • Antibacterial
  • Antifungal
  • Anti-Inflammatory
  • Astringent
  • Circulatory Stimulant
  • Gastroprotective
  • Insecticidal
  • Nutritive
  • Rubefacient

Weekly Dose

Part Used

Leaves & Inner Bark

Family Name

Winteraceae

Distribution

Cooler Tropical islands Around new Zealand

Constituents of Interest

  • Anthocyanins
  • Dialdehyde polygodial
  • Sesquiterpenes
  • Eugenol

Common Names

  • Horopito
  • New Zeland Pepper Tree
  • Maori Painkiller
  • Ramarama

CYP450

  • Unknown

Quality

  • Warm

Pregnancy

  • Safety during pregnancy not well established, avoid use while pregnant or breastfeeding.

Duration of Use

  • Long-term use is acceptable and common

Botanical Information

Horopito is a member of the Winteraceae family of plants — which consists of about 90 species of trees and shrubs nearly exclusive to the Southern hemisphere.

The leaves of horopito have a characteristic red color as a result of the sesquiterpene content of the leaves — which are also one of the main medicinal compounds in the plant.

 

Cautions & Safety Information:

There have been very few reports of side effects from using horopito — however, some reports of allergic reactions have been reported.

Horopito should be avoided by epileptics due to a possible increase in extracellular glutamate found in some animal studies.

Avoid larger doses of the herb with acute gastritis or peptic ulcers.

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated March 2020)

 

Recent Blog Posts:

References:

  1. insert

Chaga (Inonotus obliquus)

chaga-fungi.jpeg

What is Chaga?

Chaga is a slow-growing tree fungus found in cold climates around the world.

This fungus is thought to be one of the best immunomodulators in the natural world. It has a long history of use as medicine, has been the subject of dozens of clinical trials, and is the source product for over 40 pharmaceutical oncology medications.

The fungus itself doesn’t have an appetizing appearance, resembling burnt, diseased growth protruding from birch or alder trees. Once harvested chaga looks more like a rock than a herb.

Despite its appearance, chaga makes a delicous tea resembling the color and flavor of coffee — without the caffeine.

 

What is Chaga Used For?

Chaga is primarily used as an immune tonic. It’s consumed in capsules, as a strong tea, or in tincture form for supporting and stimulating several different parts of the immune system.

Medicinally, the msot common use for the herb is as an adjunctive cancer treatment, and for compromised immune systems.

Herbalists often use chaga for heart disease, high cholesterol, hypertension, hyperglycemia, and atherosclerosis. This fungus contains an array of antioxidant, immune-boosting, anti-inflammatory, and adaptogenic compounds that give it a long list of potential uses.

 

Traditional Uses of Chaga

Chaga was commonly used for conditions such as cancer, ulcers, infection, and heart disease. In Russia and Siberia, chaga was used for general health-promoting effects. People drank chaga tea to prevent illness and infection and promote overall vitality and health.

+ Northern Europe

A lot of the traditional knowledge we have of the fungus today comes from the Khanty people of Siberia (formerly called the Ostyaks). This group had a strong affinity for the fungus which grew abundantly in the birch forests they lived in. They used it as an anthelmintic to kill parasites, to treat tubuculosis (TB), for digestive disorders (gastritis, ulcers, etc), for liver disease, and to prevent or treat heart dissease.

The Khanty people used chaga as a tea as it’s commonly used today — but they also smoked it, or topically by burning it and using the ash to make an antiseptic soap.

In some parts of Russia where chaga consumption was common, the USSR Ministry of Health noticed dramatic reductions in cancer rates among these popularions and attributed it to the consumption of chaga. It was then added to the official Soviet Pharmacopoea in 1955.

+ Asia

Chaga can also be found in the cold regions of Korea, Japan, and China. Here, chaga was used for its benefits on metabolic function, heart function, and for its antiseptic, anti-inflammatory, and antioxidant activities.

 

Herb Details: Chaga

Herbal Actions:

  • Adaptogen
  • Anti-Ulcer
  • Anticancer
  • Antinflammatory
  • Antioxidant
  • Antiviral
  • Immunomodulator

Part Used

Fruiting Body

Family Name

Hymenochaetaceae

Distribution

Northern parts of the world in cluding Canada, Siberia, and Scandanavia. It grows exclusively where birch trees are found.

Constituents of Interest

  • 3β-hydroxy-lanosta-8,24-dien-21-al
  • Inotodiol
  • Lanosterol
  • Polysaccharides/beta-glucans

Common Names

  • Chaga
  • Birch Mushroom
  • Cinder Conk
  • Champignon de l’Immortalité
  • Black Mass
  • Birch Canker Polypore

Pregnancy

  • There are no reports of toxicity or complications using chaga while pregnant

Duration of Use

  • Long-term use of chaga is acceptable

Mycological Information

Chaga grows on various hardwood tree species — including birch (Betula spp.), oaks (Quercus spp.), poplar (Populus spp.), alder (Alnus spp.), ashes (Fagus spp.), and maple (Acer spp.). The most common species of tree you’re likely to find chaga on is birch.

There’s some debate as to whether chaga is parasitic or symbiotic. While it has clear parasitic tendencies, it also offers some benefits to the host tree that detract from the parasitic hypothesis — for example, when the tree becomes wounded, chaga will often form around the injury, protecting it from infection and further damage.

With that said, most of the current literature lists chaga as a parasitic fungi.

The lifecycle of this intriguing fungus is poorly understood. The hard, dark growths we know of as chaga is completely sterile. Only after the tree dies does the chaga mushroom begin to release spores. The fruiting bodies of the chaga form in the bark of the tree. They attract insects which devour the fruiting bodies very quickly. It’s believed the insects then carry the spores to a new host tree. very few chaga fruiting bodies have ever been found in nature.

When chaga spores find a new host they germinate and begin to grow under the bark. The growth is very slow, taking place over 5 to 7 years. Eventually, a black-colored blister begins to appear on the outside of the tree which is the part we use as medicine. Inside the hard black outer layer of the fungus is a soft core with a burnt-orange color.

 

Cultivation, Harvesting & Preparation

Harvesting chaga is difficult, and should only be done by experienced wild crafters to avoid damaging or killing the host tree. Usually, the wild-crafter will climb up to where the chaga is located, and using a saw or chisel, they’ll cut away chunks of the chaga — being careful not to damage the host tree underneath or remove too much of the fungus.

Preparing chaga can be difficult as well unless you buy it pre-ground or chopped. This fungus is extremely tough and hard to break into smaller pieces to make a tea with.

One of the best ways to prepare chaga for tea is to cut it into smaller pieces with a ban-saw. Smaller chunks can be added to a bag and beaten with a hammer into smaller pieces.

Chaga can then be added to a pot and simmered for 10-15 minutes to produce a dark, mildly bitter tea.

 

Pharmacology & Medical Research

+ Inflammation

Animal studies on chaga has revealed potent anti-microbial effects on experimental models of colitis [5]. Other animal studies have tested the effects of chaga on broader inflammatory models. One such study found that chaga extracts inhibited key inflammatory messengers such as nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α) [14].

+ Cancer

One of the most well-studied aspects of chaga is its effects on cancer. None of these studies are clinical trials. The majority of research involves in vitro or animal research.

There are hundreds of medicinal compounds in chaga alone, but three in-particular stand out in the literature for their potential anti-cancer effects — betulin, betulinic acid, and inotodiol.

The tetracyclic triterpene called inotodiol has been of particular interest by the scientific community studying the effects of chaga for cancer therapy. This compound has been shown to have direct anti-proliferative activities on lung adenocarcinoma cells (A549) [8].

Chaga grown on birch trees also contain some of the medicinal compounds from the host tree — such as betulin or betulinic acid. Both of these compounds have shown promising inhibitory activity on cancer cell lines as well (cutaneous, ovarian, and pulmonary) [9,10,11].

+ Antiviral

Innonotus obliquus was found to inhibit several viruses in vitro:

  • Hepatitis C [2]

  • Human Immunodeficiency Virus (HIV) [3]

  • Herpes simplex virus I (HSV-I) [13]

+ Immunomodulation

Chaga endo-polysaccharide extract (BELYU1102) was shown to possess powerful immuno-stimulant activity in cell cultures. The extract was shown to increase proliferation of IgM antibodies in B cells, and lead to an increase in nitrite production, IL-6, IL-1, TNF-alpha, and iNOS in macrophages [4]. The endopolysaccharide fraction used in this study did not lead to a proliferation of T cells, the IL-2 expression of Th1 cells, or the IL-4 expression of Th2 cells. This suggests that chaga doesn’t directly kill cancer cells, but may lead to indirect inhibition of cancer growth through immuno-stimulation.

+ Metabolic Disorders

Chaga has a long history of use for metabolic disorders. Animal studies involving overfed, obese mice given chaga extracts had improved insulin sensitivity and reduced adiposity [6].

One animal study found a 31% reduction in blood sugar levels of diabetic mice given a chaga extract compared to the control group after just 3-weeks [12].

The mechanism of action for this effect is thought to be through an increase peroxisome proliferator-activated receptors γ transcriptional activities — which is a common therapeutic target for metabolic disorders such as diabetes and dyslipidaemia [7].

 

Pharmacology & Active Ingredients

Chaga contains hundreds of different compounds — many of which are still being explored for their use as medicine. The fungus is rich in compounds including polysaccharides, triterpenes (inotodiol), polyphenols, and various minerals.

 

Cautions & Safety Information:

Chaga is widely considered a safe herb, with no expected side effects from high doses, or long-term use.

With that said, anybody taking anti-diabetic or blood-thinner medications should avoid using chaga due to potential antagonistic reactions.

People on immuno-suppresive medications should also avoid this fungus. Chaga has direct immunostimulant activity and could weaken or negate the effects of the medication.

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated March 2020)

 

Recent Blog Posts:

References:

[1] — Lee, S. H., Hwang, H. S., & Yun, J. W. (2009). Antitumor activity of water extract of a mushroom, Inonotus obliquus, against HT‐29 human colon cancer cells. Phytotherapy Research, 23(12), 1784-1789.

[2] — Shibnev, V. A., Mishin, D. V., Garaev, T. M., Finogenova, N. P., Botikov, A. G., & Deryabin, P. G. (2011). Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures. Bulletin of experimental biology and medicine, 151(5), 612.

[3] — Shibnev, V. A., Garaev, T. M., Finogenova, M. P., Kalnina, L. B., & Nosik, D. N. (2015). Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus. Voprosy virusologii, 60(2), 35-38.

[4] — Kim, Y. O., Han, S. B., Lee, H. W., Ahn, H. J., Yoon, Y. D., Jung, J. K., ... & Shin, C. S. (2005). Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sciences, 77(19), 2438-2456.

[5] — Choi, S. Y., Hur, S. J., An, C. S., Jeon, Y. H., Jeoung, Y. J., Bak, J. P., & Lim, B. O. (2010). Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate. BioMed Research International, 2010.

[6] — Lee, J. H., & Hyun, C. K. (2014). Insulin‐sensitizing and beneficial lipid‐metabolic effects of the water‐soluble melanin complex extracted from Inonotus obliquus. Phytotherapy research, 28(9), 1320-1328.

[7] — Joo, J. I., Kim, D. H., & Yun, J. W. (2010). Extract of Chaga mushroom (Inonotus obliquus) stimulates 3t3‐l1 adipocyte differentiation. Phytotherapy research, 24(11), 1592-1599.

[8] — Zhong, X. H., Wang, L. B., & Sun, D. Z. (2011). Effects of inotodiol extracts from Inonotus obliquus on proliferation cycle and apoptotic gene of human lung adenocarcinoma cell line A549. Chinese journal of integrative medicine, 17(3), 218-223.

[9] — Dehelean, C. A., Şoica, C., Ledeţi, I., Aluaş, M., Zupko, I., Gǎluşcan, A., ... & Munteanu, M. (2012). Study of the betulin enriched birch bark extracts effects on human carcinoma cells and ear inflammation. Chemistry Central Journal, 6(1), 137.

[10] — Fulda, S. (2008). Betulinic acid for cancer treatment and prevention. International journal of molecular sciences, 9(6), 1096-1107.

[11] — Drag, M., Surowiak, P., Drag-Zalesinska, M., Dietel, M., Lage, H., & Oleksyszyn, J. (2009). Comparision of the cytotoxic effects of birch bark extract, betulin and betulinic acid towards human gastric carcinoma and pancreatic carcinoma drug-sensitive and drug-resistant cell lines. Molecules, 14(4), 1639-1651.

[12] — Sun, J. E., Ao, Z. H., Lu, Z. M., Xu, H. Y., Zhang, X. M., Dou, W. F., & Xu, Z. H. (2008). Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. Journal of ethnopharmacology, 118(1), 7-13.

[13] — Pan, H. H., Yu, X. T., Li, T., Wu, H. L., Jiao, C. W., Cai, M. H., ... & Peng, T. (2013). Aqueous extract from a Chaga medicinal mushroom, Inonotus obliquus (higher basidiomyetes), prevents herpes simplex virus entry through inhibition of viral-induced membrane fusion. International journal of medicinal mushrooms, 15(1).

[14] — Park, Y. M., Won, J. H., Kim, Y. H., Choi, J. W., Park, H. J., & Lee, K. T. (2005). In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. Journal of Ethnopharmacology, 101(1-3), 120-128.

Fish Mint (Houttuynia cordata)

houttuynia-cordata.jpg

What is Houttuynia?

Houttuynia is a Southeast Asian herb that’s spread all over the world as an invasive species. It’s common name “fish mint” refers to the strong fish-like aroma of the essential oil content. This characteristic flavor makes the herb useful as a flavoring in various dishes.

The fishy roots of the herb are also eaten as a vegetable in some Asian dishes.

Houttuynia is one of the most relevant herbs at the moment in the search for potential sources of medicine against the COVID-19 virus.

This herb has potent antiviral activity — shown to be active against SARS, as well as other coronaviruses, influenza, herpes type I and II, HIV, Dengue, and Chikungunya virus.

 

What is Houttuynia Used For?

Houttuynia is primarily used for bacterial and viral infections of the respiratory tract. It’s considered most effective if taken prophylactically, but may provide use during infection as well to slow the spread of the disease.

Other applications of the herb are for its diuretic effects, anti-allergic effects, anti-inflammatory actions, and for diabetes.

 

Traditional Uses of Houttuynia

In Southeast Asia, where houttuynia thrives, the leaves are used in a lot of local culinary dishes. The leaves have a characteristic “fishy” flavor and aroma that lend itself to some dishes as a garnish or spice. In parts of China, the roots are eaten in a dish called Zhé'ěrgēn.

Medicinally, fish mint has had a long history of use in Japan, Korea, China, and Vietnam for a wide range of conditions.

The leaves of the fish mint plant were traditionally used for the following:

  • Digestive issues

  • Insect bites

  • Hypertension

  • Constipation

  • Hyperglycemia

  • Influenza or other viral infections

  • Pneumonia

  • Kidney disorders

  • Inflammation of the urinary tract

  • Cough

  • Insect repellant

Topically, the herb was used for sores, carbuncles, and inflammation.

In traditional Chinese medicine the herb was used to reduce heat.

Fish-mint.jpg

Herb Details: Houttuynia

Herbal Actions:

  • Antiviral
  • Diuretic
  • Antibacterial
  • Anti-Anaphylactic
  • Anti-Allergy
  • Antinflammatory
  • Febrifuge

Weekly Dose

Part Used

Aerial Parts

Roots Are Eaten as a Vegetable

Family Name

Saururaceae

Distribution

Southeast Asia

Constituents of Interest

  • β-myrcene
  • 2-undecanone

Common Names

  • Fish Mint
  • Chameleon Plant
  • Houttuynia
  • Chinese Lizard Tail
  • Bishop's Weed
  • Diếp cá (Vietnam)
  • Yu Xing Cao (China)

CYP450

  • Unknown

Quality

  • Cold

Pregnancy

  • Avoid houttuynia if pregnant or breastfeeding

Taste

  • Pungent

Duration of Use

  • Long-term use should be avoided (more than 2 months)

Botanical Information

Houttuynia is a member of the Saururaceae family of plants — which is often referred to as the lizards table family because of the characteristic tail-like appearance of the flower spikes.

There are only two members of the Houttuynia genus — Houttuynia cordata and Houttuynia emeiensis.

Despite the common name “fish mint” houttuynia has no relation to the mint family of plants.

All parts of the plant posess a unique flavor and aroma — which is best described as having a raw fish aroma, with some hints of citrus, lemon, sandalwood, or coriander.

There are reportedly two varieties of fish mint:

  • Japanese Fish Mint — has more of a citrus aroma & flavor

  • Chinese Fish Mint — has a fishy and coriander aroma & flavor

The leaves of the fish mint plant are heart-shaped, which can range from being dark green to light pink. The underside of the leaves has a purple hue. Some of the ornamental cultivars come in a wide variety of different color combinations.

 

Cultivation, Harvesting & Preparation

Houttuynia prefers growing in shady, moist environments and can even grow while slightly submerged in water. You can often find this herb growing nearby streams, and in deep forests. This herb is very resourceful and can be very difficult to get rid of.

Once houttuynia finds an area it likes it will take over completely — causing many regions to classify it as a potential threat to the environment.

It’s considered an invasive weed in places such as the United States, Australia, various pacific islands, and South America. It reportedly thrives in USDA Zones 5a to 9b.

In Asia, the herb can be found growing anywhere from sea level to around 2500 meters in altitude.

Fish mint loves water, so make sure to keep this one wet at all times. As long as the leaves remain above the water-level the plant will continue to thrive.

This herb is a perennial, growing up to 1 meter in height and spreading out in a 1 meter radius. It primarily spreads with the help of adventitious roots that creep along the moist soil of the rainforest bottom.

propagating the plant is best done from cuttings. The seeds of the plant are usually sterile.

houttuynia-cordata-plant.jpg

Pharmacology & Medical Research

+ SARS-CoV 1 & 2

SARS (Severe Acute Respiratory Syndrome) is a life-threatening form of pneumonia caused by the SARS-CoV-1 virus. It began spreadin in late 2002 to 2003 from patient 0 in China. The disease eventually spread to over 8000 people around the world. As the world scrambled to find treatment, houttynia was shortlisted by Chinese researchers.

During this research, houttuynia was found to increase the proportion of CD4+ and CD8+ T cells [5].

CD4+ T-helper cells play a critical role in the adaptive immune system when dealing with bacterial or viral infections. These cells then pass along information to CD8 cytotoxic cells that can use three separate mechanisms to attack and kill the infection once identified.

The same study also showed houttuynia extract increased IL-2 and IL-10 activity — both of which are critical components in the adaptive immune response necessary to fight viral infection.

This study also looked at the direct effects of houttuynia extract on the SARS virus. The study found the extract had an inhibitory effect on SARS-CoV 3C-like protease (3CLpro) and RNA-dependent RNA polymerase (RdRp).

3C-like protease and SARS-CoV are both critically important for the life-cycle of the virus. These are two areas deemed critically important target in the search for potential prevention or treatment of the virus.

Now, in 2020, another closely related virus is currently causing a pandemic around the globe — SARS-CoV-2 (AKA COVID-19). As a result, houttuynia is being re-investigated as the world seeks to find a potential cure for the new and deadly virus.

+ Other Antiviral Activity

Houttuynia has been the subject of study for dozens of human and animal viruses — many of which the herb has shown primising inhibitory effects:

  • Chikungunya virus [9]
  • Human Immunodeficiency virus type 1 (HIV-1) [10]
  • Herpes Simplex Virus type 1 (HSV-1) [10]
  • Herpes Simplex Virus Type 2 (HSV-2)
  • Influenza Virus [10]
  • Enterovirus-71 [11]
  • Dengue Virus Type 2 [12]

+ Antibacterial Activity

Houttuynia has a long history of use for treating respiratory tract infections of both viral and bacterial causes. This has prompted a lot of researcher to look at the effects of the herb on bacterial infections — particularily those developing resistance to antibiotics such as multi-drug resistant staphylococcus aureaus (MRSA).

One study found houttuynia posessed anti-bacterial effects against MRSA through direct bacteriocidal activity (inhibition of biofilm formation) and an induction of IL-8 [6] — which is one of the first responses triggered by the body during bacterial infection.

+ Cytotoxic Effects

There are five bioactive alkaloids isolated from houttuynia that have been shown to have cytotoxic effects agains human cancer cell lines (in vitro) [1]. This was only a preliminary study but offers evidence for further investigation.

The alkaloids used in the study included:

  • A-549
  • SK-OV-3
  • SK-MEL-2
  • XF-498
  • HCT-15

+ Anti-Allergic Effects

A mice study investigated the anti-allergic effects of houttuynia by exploring the potential effects of the herb to prevent anaphylaxis — a severe allergic reaction [2].

The study found hoouttuynia water extract was able to inhibit induced systemic anaphylaxis in mice, as well as local allergic reactions by reducing the degranulation of mast cells, histamine release, and calcium uptake.

The study concluded by stating that "[houttuynia] may be beneficial in the treatment of mast cell-mediated anaphylactic responses.

Another animal study showed a houttuynia water-extract had an inhibitory effect on inhibited IgE-mediated systemic passive cutaneous anaphylaxis (in mice) [4].

+ Anti-Inflammatory Effects

An animal study exploring the anti-inflammatory effects of houttuynia found the volotile oil extract of the plant had an inhibitory effect on PGE2 — a potent inflammatory cytokine produced via the COX-2 enzyme [3]. This is the main inflammatory mediator inhibited by such medications as acetyl-salycilic-acid (Aspirin).

The same study also found houttuynia volotile oil reduced other key inflammatory messengers including nitric oxide (NO) and TNF‐α.

+ Effects of Houttuynia on Diabetes

An animal study on diabetic rats given houttuynia found the herb had protective effects on the pancreatic beta-cells through an upregulation of GLUT-4 and potential antioxidant activity [7].

The beta-cells are tasked with producing the body's insulin supply. As blood glucose levels rise, the glucose can damage sensitive tissues such as the beta-cells in the pancrease — leading to a further reduction of insulin activity and worsening of hyperglycemia.

GLUT-4 is the insulin-mediated transporter on the surface of our cells. Insulin binds to GLUT-4 to pull glucose molecules inside where they're converted into energy.

chamelion-plant.jpg

Phytochemistry

+ Essential Oil Content

  • 2-undecanone (methyl nonyl ketone)
  • Myrcene
  • Houttuynin (decanoyl acetaldehyde/3-oxo-dodecanal)
  • Decanal
  • (E)-caryophyllene
  • Decanoic ac id
  • Camphene
  • β-pinene
  • Lauraldehyde
  • Bornyl acetate
  • α-pinene
  • Limonene
  • 4-terpineol
  • Caryophyllene oxide
  • Nonanol
  • linalool

Source: [8]

 
fish-mint-japan.jpg

Cautions & Safety Information:

Houttuynia has been reported to cause severe allergic reactions in some people.

Avoid using this herb if pregnant or breastfeeding. There is not enough evidence to prove the herb is safe during pregnancy.

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated March 2020)

 

Recent Blog Posts:

References:

  1. Kim, S. K., Ryu, S. Y., No, J., Choi, S. U., & Kim, Y. S. (2001). Cytotoxic alkaloids fromHouttuynia cordate. Archives of pharmacal research24(6), 518-521.

  2. Li, G. Z., Chai, O. H., Lee, M. S., Han, E. H., Kim, H. T., & Song, C. H. (2005). Inhibitory effects of Houttuynia cordata water extracts on anaphylactic reaction and mast cell activation. Biological and Pharmaceutical Bulletin, 28(10), 1864-1868.

  3. Li, W., Fan, T., Zhang, Y., Fan, T., Zhou, P., Niu, X., & He, L. (2013). Houttuynia cordata Thunb. Volatile Oil Exhibited Anti‐inflammatory Effects In Vivo and Inhibited Nitric Oxide and Tumor Necrosis Factor‐α Production in LPS‐stimulated Mouse Peritoneal Macrophages In Vitro. Phytotherapy Research, 27(11), 1629-1639.

  4. Han, E. H., Park, J. H., Kim, J. Y., & Jeong, H. G. (2009). Houttuynia cordata water extract suppresses anaphylactic reaction and IgE-mediated allergic response by inhibiting multiple steps of FcεRI signaling in mast cells. Food and chemical toxicology, 47(7), 1659-1666.

  5. Lau, K. M., Lee, K. M., Koon, C. M., Cheung, C. S. F., Lau, C. P., Ho, H. M., ... & Tsui, S. K. W. (2008). Immunomodulatory and anti-SARS activities of Houttuynia cordata. Journal of Ethnopharmacology, 118(1), 79-85.

  6. Sekita, Y., Murakami, K., Yumoto, H., Mizuguchi, H., Amoh, T., Ogino, S., ... & Kashiwada, Y. (2016). Anti-bacterial and anti-inflammatory effects of ethanol extract from Houttuynia cordata poultice. Bioscience, biotechnology, and biochemistry80(6), 1205-1213.

  7. Kumar, M., Prasad, S. K., Krishnamurthy, S., & Hemalatha, S. (2014). Antihyperglycemic activity of Houttuynia cordata Thunb. in streptozotocin-induced diabetic rats. Advances in pharmacological sciences2014.

  8. Verma, R. S., Joshi, N., Padalia, R. C., Singh, V. R., Goswami, P., Kumar, A., ... & Saikia, D. (2017). Chemical Composition and Allelopathic, Antibacterial, Antifungal, and Antiacetylcholinesterase Activity of Fish‐mint (Houttuynia cordataThunb.) from India. Chemistry & biodiversity, 14(10), e1700189.

Juniper (Juniperus communis)

Juniper berries are potent antiseptics when applied both topically and internally. They are often used to prevent the spread of infection and to treat urinary tract...Write here...

Manuka (Leptospermum scoparium)

manuka-Leptospermum-scoparium-cover.jpg

What is Manuka?

In New Zealand, where manuka trees grow, the Maori consider male tea tree plants "Kanuka" and the female plants "Manuka". The plant is regarded very highly in this culture as a medicinal species.

The most well-known form of manuka is in manuka honey. This is a honey made by bees feasting primarily on manuka bushes. The honey has an impressive antibacterial profile when made from these plants. This is also reflected in the herb itself, which has been shown to have potent antibacterial, anti-fungal, and antiviral activity.

Most of the medicinal benefits of the plant come from its essential oil content, which can vary a lot depending on the region the plant was grown in.

 

What is Manuka Used For?

Internally, manuka is used to treat gastrointestinal conditions like diarrhea, colic, inflammatory bowel syndrome, and dysentery. It's also used for urinary tract infection, anxiety, and cold/flu infections.

Manuka is used topically for its antibacterial, and vulnerary actions. It's used to treat slow healing skin and bone injuries, bacterial infections, candida, and eczema. It can be gargled for gingivitis, or for general oral hygiene.

Manuka honey is another common form of the plant. It's become so popular worldwide, it's been standardised by the phenol content. This is expressed as a unique manuka factor (UMF) value set by the Active Manuka Honey Association (AMHA). Anything over UMF 5 is considered strong enough to kill MRSA.

 

Herb Details: Manuka

Herbal Actions:

  • Anti-inflammatory
  • Antibacterial
  • Antifungal
  • Antispasmodic
  • Anxiolytic
  • Diaphoretic
  • Diuretic
  • Febrifuge
  • Sedative
  • Astringent

Weekly Dose

Part Used

  • Leaves, Flowers, Bark

Family Name

  • Myrtaceae

Distribution

  • New Zealand

Constituents of Interest

  • Leptospermone
  • Sesquiterpenes
  • Tannins
  • Citronellal

Common Names

  • Manuka
  • Tea Tree
  • New Zealand Tea Tree

Quality

  • Neutral-Warm

Pregnancy

  • Unknown

Taste

  • Spicy

Duration of Use

  • Long term use is acceptable, but should be taken away from food.
 

Botanical Information

Manuka is a member of the Myrtaceae family of plants. This family contains as many as 133 different genera, and around 3800 different species, many of which are medicinally relevant.

 

Clinical Applications Of Manuka:

Manuka is useful both internally and topically. It's been shown to be an effective antibacterial agent for various forms of bacteria (including Staphylococcus). It's also an effective anti-fungal and antiviral (including HSV). The antibacterial effects were the most notable, with only some chemotypes of Manuka showing potent anti-fungal benefits.

Manuka can be used for nearly any form of bacterial infections both topically and internally, as well as wounds, ulcers, and gastrointestinal inflammation or infection. It's also useful for skin inflammation like eczema or psoriasis. The muscle relaxant effects make it useful for injuries, muscle tension, colic, and insomnia.

 

Cautions:

Manuka is widely considered safe and there are no common side effects of the herb.

+ Contraindications

Avoid long-term use alongside food. Tannins may impede mineral absorption.

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated November 2018)

 

Recent Blog Posts:

Graviola (Annona muricata)

graviola-cover.jpg

What is Graviola?

Graviola is a large tropical tree with a rich history of traditional use for conditions like cancer, parasitic infection, insomnia, and dysentery. Modern use remains very similar, mainly focusing on tension headaches and muscle aches, insomnia, diabetes, cancer, hypertension, and parasitic infection.

Although the entire plant has been used as medicine by various traditional medical systems, the most common form the plant is available in today is as a leaf extract, and raw leaves intended for tea.

Graviola is gaining in popularity outside worldwide as a general health supplement, blood sugar regulator, and anticancer agent. As a result, it's getting easier to find the herb as time goes on. It is likely this tea will become a staple in Western herbal medicine in the coming years.

Featured Graviola

 

How Is Graviola Used?

Graviola is mainly used as an adjunctive treatment for cancer, especially leukemia and other haematological cancers, as well as prostate, colon, and breast cancers.

Graviola is also popular as an anti-diabetic herb, and can be used to reduce hypertension, especially in combination with diabetes or metabolic syndrome.

Graviola is a potent anti-parasitic, useful for a wide range of different parasitic species, including worms, protozoa, and bacterial parasites.

 

Traditional Uses of Graviola

+ South America

Graviola originated from South America and/or the Carribean. All parts of the plant were used as medicine for a wide range of conditions.

The most common use of the plant appears to involve cancer treatment and parasitic infection.

The darkest leaves on the plants were used primarily as a sedative or antispasmodic. They were used to treat insomnia, arthritic pains, colic, dysentery, muscle aches, headaches, and diabetes. The leaves were often placed inside a pillow or bedsheets to improve sleep.

In Brazil, the leaves were made into a tea for treating various liver conditions. The oil of the leaves and unripe fruits were used topically for treating neuralgia, and arthritis.

In Peru, the leaves were used to treat excess catarrh, and the bark and root were used for treating diabetes, insomnia, and muscle aches.

In Guyana, the leaves were used as a heart tonic.

+ Southeast Asia

In Southeast Asia, graviola was an important treatment for malaria. It was made into candies, ice cream, and syrups for treating malaria and other parasites.

 

Herb Details: Graviola

Herbal Actions:

  • Anticancer
  • Antinflammatory
  • Antioxidant
  • Antispasmodic
  • Anticonvulsant
  • Antidepressant
  • Antidiabetic
  • Antibacterial
  • Antiarthritic
  • Antilithic
  • Antimalarial
  • Bradycardic
  • Digestive stimulant
  • Febrifuge
  • Hepatoprotective
  • Hypotensive
  • Sedative
  • Vasodilator

Weekly Dose

Part Used

  • Leaves

Family Name

  • Annonaceae

Distribution

  • North & South America, The Caribbean, Indonesia, Western Africa, Pacific Islands

Constituents of Interest

  • Acetogenins
  • Alkaloids (reticulin, coreximine, coclarine and anomurine)
  • Essential oils (β-caryophyllene, δ-cadinene, epi-α-cadinol and α-cadinol)
  • Quercetin

Common Names

  • Graviola
  • Custard Apple Tree
  • Soursop
  • Annona
  • Guanabana (South America)

Quality

  • Cool*

Pregnancy

  • Unknown

Taste

  • Sour

Duration of Use

  • Avoid long term use.
 

Botanical Information

Graviola is a large tree, growing to a height of 10m. It requires high humidity, warm weather, and high annual rainfall in order to thrive. It produces large, edible fruits with an acidic taste (hence the common name soursop).

There are over 130 different genera in the Annonaceae family, and around 2300 different species. The Annona genus itself has about 70 different species. Annona muricata is the most commonly grown worldwide.

 

Phytochemistry

There are over 100 annonaceous acetogenins in the plant, which are considered to be the primary active constituents of the plant. Structurally these chemicals are derivatives of long chain (C35 or C37) fatty acids. These compounds are cytotoxic against tumour cell lines, and molluscicidal.

Graviola is also rich in alkaloids, saponins, terpenoids, flavonoids, coumarins, lactones, anthraquinones, tannins, cardiac glycosides, phenols, and phytosterols.

+ Complete Phytochemical Makeup

Annonaceous Acetogenins

The leaves contain annomuricins A and B, gigantetrocin A, annonacin-10-one, muricatetrocins A and B, annonacin, goniothalamicin, muricatocins A and B, annonacin A, (2,4-trans)-isoannonacin, (2,4-cis)-isoannonacin, annomuricin C, muricatocin C, gigantetronenin, annomutacin, (2,4-trans)-10R-annonacin-A-one, (2,4-cis)-10R-annonacin-A-one, annopentocins A, B and C, cis- and trans-annomuricinD-ones, annomuricine, muricapentocin, muricoreacin and murihexocin C and annocatacin A and B.

Alkaloids

Graviola contains reticulin, coreximine, coclarine and anomurine.

Essential Oils

Graviola contains β-caryophyllene, δ-cadinene, epi-α-cadinol and α-cadinol.

 

Clinical Applications Of Graviola:

Graviola is useful for parasitic infection, including protozoan, and helminth parasites. It's used as a mild sedative and antispasmodic, and can be very useful for gastrointestinal inflammation and dysbiotic conditions.

Graviola is also a popular treatment for diabetes by slowing lipid per-oxidation, and restoring islet beta-cells in the pancreas.

It's commonly used as an adjunctive treatment of cancer, especially haematological cancers and colon cancer.

 

Cautions:

Graviola has been reported to increase symptoms of Parkinson's Disease.

Caution advised in combination with other hypoglycaemic drugs due to potential additive effect.

+ Contraindications

  • May exacerbate Parkinson's Disease symptoms (Acetogenin content)
  • Caution advised in combination with other hypoglycemic drugs due to potential additive effect.
 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated November 2018)

 

Recent Blog Posts:

References:

  1. Moghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H. M., & Kadir, H. A. (2015). Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. International journal of molecular sciences, 16(7), 15625-15658.

  2. De Sousa, O. V., Vieira, G. D. V., De Pinho, J. D. J. R., Yamamoto, C. H., & Alves, M. S. (2010). Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. International journal of molecular sciences, 11(5), 2067-2078.

  3. Torres, M. P., Rachagani, S., Purohit, V., Pandey, P., Joshi, S., Moore, E. D., ... & Batra, S. K. (2012). Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer letters, 323(1), 29-40.

  4. Coria-Tellez, A. V., Montalvo-Gónzalez, E., Yahia, E. M., & Obledo-Vázquez, E. N. (2016). Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arabian Journal of Chemistry.

  5. Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F., & AEl-Shemy, H. (2014). Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pacific journal of tropical medicine, 7, S355-S363.

  6. Arroyo, J., Martínez, J., Ronceros, G., Palomino, R., Villarreal, A., Bonilla, P., ... & Quino, M. (2009, September). Efecto hipoglicemiante coadyuvante del extracto etanólico de hojas de Annona muricata L (guanábana), en pacientes con diabetes tipo 2 bajo tratamiento de glibenclamida. In Anales de la Facultad de Medicina (Vol. 70, No. 3, pp. 163-167). UNMSM. Facultad de Medicina.

  7. Adewole, S., & Ojewole, J. (2009). Protective effects of Annona muricata Linn.(Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. African journal of traditional, complementary and alternative medicines, 6(1).

  8. Adeyemi, D. O., Komolafe, O. A., Adewole, O. S., Obuotor, E. M., Abiodun, A. A., & Adenowo, T. K. (2010). Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with extracts of Annona muricata. Folia morphologica, 69(2), 92-100.

  9. Adewole, S. O., & Caxton-Martins, E. A. (2006). Morphological changes and hypoglycemic effects of Annona muricata linn.(annonaceae) leaf aqueous extract on pancreatic β-cells of streptozotocin-treated diabetic rats. African Journal of Biomedical Research, 9(3).