Herbal Monographs

anticancer

Cryptolepis (Cryptolepis sanguinolenta)

cryptolepis.jpg

What is Cryptolepis?

Cryptolepis is a potent antibmicrobial herb originating from Africa and Southeast Asia. It’s become one of the go-to herbal species for treating resistant bacteria and malaria.

The active constituents of the plant are a group of alkaloids, each of which have been proven effective against a wide variety of bacterial, mycobacterial, fungal, and parasitic organisms (specific strains listed below).

The roots also contain a rich yellow pigment that makes the herb useful for dying fabrics and leather a deep yellow color.

 

What is Cryptolepis Used For?

Cryptolepis is almost exclusively used as an antimicrobial against parasitic, bacterial, amoebic, and fungal infections. This herb is very useful for infections of all kinds. It’s a popular herb for digestive disorders and infection, topically for skin infections, or orally for urinary tract infections.

Outside of medicine cryptolepis is used as a source of yellow dye — lending to one of its common names, yellow dye root.

 
Brewing a Decoction of Cryptolepis

Brewing a Decoction of Cryptolepis

Traditional Uses of Cryptolepis

+ Africa

Cryptolepis originates from Africa, where it was primarily used to treat malaria, amoebic dysentery, and both urinary and respiratory infection.

The herb’s success with malaria patients is what made the plant so popular today, and there is now large plots of land dedicated to its cultivation to meet the demand for the herb within Africa, as well as elsewhere in the world.

+ Asia & Indonesia

A closely related species — Cryptolepis buchanii — grows throughout Indonesia, Thailand, China, India, and Nepal.

This species was used in Thailand for treating systemic inflammation, arthritis, and muscle pain.

In India, this species was used to treat diarrhea, bacterial infection, ulcers, and for treating rickets in children.

 

Herb Details: Cryptolepis

Herbal Actions:

  • Antiamoebic
  • Antibacterial
  • Anticancer
  • Antifungal
  • Anti-inflammatory
  • Antiparasitic
  • Antipyretic
  • Antiviral (Mild)

Weekly Dose

Part Used

Roots

Family Name

Apocynaceae

Distribution

Africa & Southeast Asia

Constituents of Interest

  • Cryptolpine
  • Norcyptolepine
  • Cryptospirolepine
  • Isocryptolepine

Common Names

  • Cryptolepis
  • Yellow Dye Root
  • Delboi
  • Gangamau
  • Ghanian Quinine
  • Kadze
  • Koli Mekari
  • Kpokpo-Yangolei
  • Nibima
  • Nombon
  • Nurubima
  • Ouidoukoi
  • Paran Pupa

CYP450

  • Unknown

Pregnancy

  • Avoid cryptolepis if pregnant or breastfeeding

Duration of Use

  • High-dose use of cryptolepis (4-6mL per day) should be limited to 60 days. Low-doses (1-2 mL per day) is considered safe for long-term use.

Botanical Information

Cryptolepis is a member of the Apocynaceae (dogbane) family — which contains roughly 348 genera of trees, shrubs, vines, and herb succulents. members of this family can be found throughout the tropics.

Another notable species in this family is Vinca major (periwinkle)

Most of the species in this family grow in dense tropical rainforests, but a select few prefer harsh, dry environments — including cryptolepis, which prefers dry savanah forests. You’re more likely to find the herb growing near a source of water, however.

You can find cryptolepis wild in dry grassy or forested regions from Senegal east to Nigeria. The plant can also be found sporatically in Camaroon and the Congo.

Some related species grow in Australia as well.

Within the cryptolepis genus there are roughly 42 species — with the primary studied species being Cryptolepis sanguinolenta.

cryptolepis-leaves.jpg
 

Cultivation, Harvesting & Preparation

Both the roots and stems of the plant have been used as medicine, but the roots contain nearly twice as much of the active alkaloids than the stem — so most people tend to just use the roots instead.

 

Pharmacology & Medical Research

+ Antibacterial

Cryptolepis is well-known for its antibacterial activity — and is considered by many herbalists to be one of the most reliable systemic antimicrobial herbs available.

Cryptolepis has been tested agains many different strains of bacteria, amoeba, fungi, parasites, and virus.

The most active inhibitory effects of the herb are towards bacteria and parasites, with mild anti-fungal and antiviral activity.

These alkaloids work by inhibiting growth, breaking down cell membranes (lysis), causing morphological changes to the cell, and direct bactericidal activities [1, 2, 3].

One study in particular tested the effects of various cryptolepis extracts (water, ethanol, petroleum ether, chloroform, and ethyl acetate extracts) agains antibiotic-resistant bacteria [1]. The herb was effective agains 75% of the strains tested.

The study found cryptolepis extracts to be effective against the following bacteria:

  • Staphylococcus saprophyticus

  • Staphylococcus aureus

  • Salmonella typhi

  • Proteus mirabilis

  • Excherichia coli

  • Proteus mirabilis

  • Pseudomonas aeruginosa

  • Klebsiella pneumoniae

Cryptolepis has also been shown to inhibit other organisms, including:

  • Neisseria gonorrhoeae [4]

  • Shigella dysenteriae [2]

  • Salmonella typhimurium [2]

  • Vibrio cholerae [2]

  • Enterococcus faecalis [2]

  • Campylobacter jejuni (65 strains) [5]

  • Campylobacter coli (41 strains) [5]

  • Bacillus cerues [7]

  • Streptococcus pyogenes [7]

  • Enterobacter cloacae [7]

  • Klebsiella pneumonia [7]

  • Proteus vulgaris [7]

  • Mycobacterium fortuitum [6]

  • Mycobacterium phlei [6]

  • Mycobacteriumaurum [6]

  • Mycobacterium smegmatis [6]

  • Mycobacterium bovis [6]

  • Mycobacterium abcessus [6]

The herbs effectiveness agains Escherichia coli, Proteus miribalis, and Staphylococcus saprophyticus provide a mechanism of action for the herbs traditional uses for urinary tract infection.

it should be noted that in most of the studies cited above, the ethanolic extract was by far the most effective. Water extracts were the least effective overall unless decocted for several hours.

+ Antifungal

Many of the same alkaloids active agains bacterial strains are also effective agains fungal infection.

Cryptolepine and neocryptolepine have both been shown to have antifungal activity against the following species:

  • Candida albicans [7]

  • Aspergillus niger [4]

  • Microsporum canis [7]

  • Epidermophyton floccosum [7]

  • Trichopyton rubrum [7]

  • Trichopyton mentagrophytes [7]

  • Saccharomyces cerevisiae [7]

+ Anti-Parasitic

This herb has a long history of use for malaria and other parasitic infections. As a result, there’s ben a lot of study to elucidate these effects further.

A preclinical trial using an aqueous extract of the root found the herb, as well as isolated fractions of cryptolepine and isocryptoleopine had direct antiplasmoidial activity [8]. I’s important to note that all strains of plasmodium falciparum used in this study were already resistant to chloroquine — suggesting alternate mechanisms for cryptolepine and isocryptolepines antimalarial effects.

These results have been replicated at least four more times using different alkaloid fractions of the plant, different administration methods (injection), and different strains of plasmodium — all showed varying levels of improvement from the application of cryptolepis [8, 9, 10].

One study noted a synergistic effect against plasmodium falciparum and Plasmodium berghei with artimisinins — which is a compound found in the Artemesia annua (Qing Hao). These same results were noted from a semi-synthetic analog of artemisinin called artesunate without producing any toxic side effects. [11].

Clinical Trials

In one trial [12], 44 patients with uncomplicated malaria were given cryptolepis root tea (2.5 gram equivalent) three times per day for five days. The effects were considered positive if the parasites were undetectable in the blood by day seven, and remained undetectable at a 28 day followup.

By the end of the study, 50% of patients were considered cleared of malaria after 2 days of treatment. Chills, vomiting, and nausea were cleared in all patients by day three. By the end of the trial, 93.5% of patients had undetectable levels of plasmodium in the blood, and no symptoms. These improvements are consistent with the pharmaceutical application chloroquine.

 

Phytochemistry

The primary group of medicinal compounds in cryptolepis are the alkaloids. The primary active alkaloids in the herb include:

  • Cryptolepine (the primary bioactive compound)

  • Norcryptolepine

  • Cryptospirolepine

  • Isocryptolepine

  • Hydroxycryptolepine

  • Cryptoheptine

  • Biscryptolepine

  • Neocryptolepine

  • Cryptoquindoline

The primary active ingredient is cryptolepine — which is also the primary ingredient in another well-known systemic antimicrobial plant, Sida (Sida acuta).

Cryptolepine is an indoloquinoline alkaloid with significant antimicrobial activity. This compound has been shown to have direct antimalarial, antibacterial, anticancer, antipyretic, and anti-inflammatory activities [2, 13, 14, 15].

A separate alkaloid, cryptohepine, has also been shown to posess significant antibacterial activity against both gram-negative and gram-positive bacteria [5, 20]. Other alkaloids including neocryptolepine and biscryptolepine have also shown activity agains gram-positive bacteria, but aren’t as well studied as cryptohepine or cryptolepine. Neocryptine is reported to provide more bacteriostatic activity than bacteriocidal [7].

 

Cautions & Safety Information:

Cryptolepis has been used for thousands of years without any evidence of toxic side effects. One clinical trial gave patients 80 mL of cryptolepis extract for six days (a very high dose), with no side effects reported [16].

in rats, the LD50 of cryptolepis was over 5000 mg/kg — an incredibly potent dose [17, 18].

Some mild side effects have been noted when using isolated cryptolepis alkaloids that aren’t noted in whole-plant extracts. Side effects from this may include a rise in ALP and uric acid [12].

One animal study found cryptolepis leaf extract resulted in a decreased sperm count in rats [19].

Avoid using cryptolepis in combination with antidiabetic medications and central nervous system depressants (such as phenobarbitone).

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated March 2020)

 

Recent Blog Posts:

Featured Herb Monographs

 

References:

[1] — Mills-Robertson, F. C., Tay, S. C., Duker-Eshun, G., Walana, W., & Badu, K. (2012). In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta. Annals of clinical microbiology and antimicrobials, 11(1), 16.

[2] — Paulo, A., Duarte, A., & Gomes, E. T. (1994). In vitro antibacterial screening of Cryptolepis sanguinolenta alkaloids. Journal of ethnopharmacology, 44(2), 127-130.

[3] — Sawer, I. K., Berry, M. I., & Ford, J. L. (2005). The killing effect of cryptolepine on Staphylococcus aureus. Letters in applied microbiology, 40(1), 24-29.

[4] — Boakye-Yiadom, K. (1979). Antimicrobial properties of some West African medicinal plants II. Antimicrobial activity of aqueous extracts of Cryptolepis sanguinolenta (Lindl.) Schlechter. Quarterly Journal of Crude Drug Research, 17(2), 78-80.

[5] — Paulo, A., Pimentel, M., Viegas, S., Pires, I., Duarte, A., Cabrita, J., & Gomes, E. T. (1994). Cryptolepis sanguinolenta activity against diarrhoeal bacteria. Journal of ethnopharmacology, 44(2), 73-77.

[6] — Gibbons, S., Fallah, F., & Wright, C. W. (2003). Cryptolepine hydrochloride: a potent antimycobacterial alkaloid derived from Cryptolepis sanguinolenta. Phytotherapy Research, 17(4), 434-436.

[7] — Cimanga, K., De Bruyne, T., Pieters, L., Totte, J., Tona, L., Kambu, K., ... & Vlietinck, A. J. (1998). Antibacterial and antifungal activities of neocryptolepine, biscryptolepine and cryptoquindoline, alkaloids isolated from Cryptolepis sanguinolenta. Phytomedicine, 5(3), 209-214.

[8] — Grellier, P., Ramiaramanana, L., Millerioux, V., Deharo, E., Schrével, J., Frappier, F., ... & Pousset, J. L. (1996). Antimalarial activity of cryptolepine and isocryptolepine, alkaloids isolated from Cryptolepis sanguinolenta. Phytotherapy Research, 10(4), 317-321.

[9] — Cimanga, K., De Bruyne, T., Pieters, L., Vlietinck, A. J., & Turger, C. A. (1997). In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. Journal of natural products, 60(7), 688-691.

[10] — Whittell, L. R., Batty, K. T., Wong, R. P., Bolitho, E. M., Fox, S. A., Davis, T. M., & Murray, P. E. (2011). Synthesis and antimalarial evaluation of novel isocryptolepine derivatives. Bioorganic & medicinal chemistry, 19(24), 7519-7525.

[11] — Forkuo, A. D., Ansah, C., Boadu, K. M., Boampong, J. N., Ameyaw, E. O., Gyan, B. A., ... & Ofori, M. F. (2016). Synergistic anti-malarial action of cryptolepine and artemisinins. Malaria journal, 15(1), 89.

[12] — Bugyei, K. A., Boye, G. L., & Addy, M. E. (2010). Clinical efficacy of a tea-bag formulation of Cryptolepis sanguinolenta root in the treatment of acute uncomplicated falciparum malaria. Ghana medical journal, 44(1).

[13] — Ntie-Kang, F., Lifongo, L. L., Simoben, C. V., Babiaka, S. B., Sippl, W., & Mbaze, L. M. A. (2014). The uniqueness and therapeutic value of natural products from West African medicinal plants. Part I: uniqueness and chemotaxonomy. RSC Advances, 4(54), 28728-28755.

[14] — Bierer, D. E., Fort, D. M., Mendez, C. D., Luo, J., Imbach, P. A., Dubenko, L. G., ... & Zhang, P. (1998). Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities. Journal of medicinal chemistry, 41(6), 894-901.

[15] — Paulo, A., Gomes, E. T., & Houghton, P. J. (1995). New alkaloids from Cryptolepis sanguinolenta. Journal of Natural Products, 58(10), 1485-1491.

[16] — Luo, J., Fort, D. M., Carlson, T. J., Noamesi, B. K., nii‐Amon‐Kotei, D., King, S. R., ... & Waldeck, N. (1998). Cryptolepis sanguinolenta: an ethnobotanical approach to drug discovery and the isolation of a potentially useful new antihyperglycaemic agent. Diabetic medicine, 15(5), 367-374.

[17] — Ansha, C., & Mensah, K. B. (2013). A review of the anticancer potential of the antimalarial herbal Cryptolepis sanguinolenta and its major alkaloid cryptolepine. Ghana medical journal, 47(3), 137-147.

[18] — Ansah, C., Mfoafo, E. A., Woode, E., Opoku-Okrah, C., Owiredu, W. K. B. A., & Duwiejua, M. (2008). Toxicological evaluation of the anti-malarial herb Cryptolepis sanguinolenta in rodents. J Pharmacol Toxicol, 3, 335-43.

[19] — Ajayi, A. F., & Akhigbe, R. E. (2012). Antifertility activity of Cryptolepis sanguinolenta leaf ethanolic extract in male rats. Journal of human Reproductive sciences, 5(1), 43.

[20] — Paulo, A., Gomes, E. T., Steele, J., Warhurst, D. C., & Houghton, P. J. (2000). Antiplasmodial activity of Cryptolepis sanguinolenta alkaloids from leaves and roots. Planta medica, 66(01), 30-34.

Lion's Mane (Hericium erinaceus)

lions-mane-mushroom-hericium.jpg

What is Lion's Mane?

Lion's mane is a medicinal wood-rotting fungus with a characteristic growth pattern that resembles the shaggy mane of a lion.

The fungus prefers temperate forests in North America, Europe, and Asia where it thrives on living oak, beech, or conifer trees.

The medicinal benefit of lions mane primarily involve the nervous system. Modern applications use the mushroom for general cognitive health and as a natural nootropic substance.

This mushroom is also eaten as a delicacy — with a flavor similar to lobster when cooked with butter.

In recent years lion's mane has caught the eye of the nootropic community for its ability to up-regulate nerve growth factor.

Top Lion’s Mane Products

host-defense-lions-mane-capsules.jpg

Host Defense Lion’s Mane Capsules

host-defense-lions-mane-tincture.jpg

Host Defense Lion’s Mane Tincture

host-defense-stamets-7.jpg

Host Defense Stamets 7

 

How Is Lion's Mane Used?

Lion's mane is mainly used for neurodegenerative disorders like dementia and multiple sclerosis. It's also popular as a nootropic agent for supporting optimal cognitive function long term.

Most of the people using this fungus take it in the form of a powdered capsule or tincture on a daily basis. Like most medicinal mushrooms, the biggest benefit comes from using the herb on a regular basis over long periods of time — rather than short bursts for quick impact of effects.

 

Traditional Use of Lion’s Mane

Lion’s mane mushrooms have a long history of use in Eastern Asia — including China, Korea, and Japan. Each of these regions used the mushroom for treating neurological disorders, including neurasthenia, and age-related cognitive decline, as well as for general health.

 

Herb Details: Lion's Mane

Herbal Actions:

  • Antibacterial
  • Anticancer
  • Antidiabetic
  • Antioxidant
  • Cardioprotective
  • Hepatoprotective
  • Nervine
  • Immunomodulator

Weekly Dose

Part Used

  • Fruiting Body

Family Name

  • Hericiaceae

Distribution

  • North America, Europe, Russia, Mountainous regions of Asia

Constituents of Interest

  • Hericnones
  • Erinacines
  • Lactones
  • Polysaccharides

Common Names

  • Lion's Mane
  • Monkey's Head
  • Hedgehog Fungus
  • Pom Pom
  • Houtou (China)
  • Shishigashira (China)
  • Yamabushitake (Japan)

Pregnancy

  • Safe during pregnancy.

Duration of Use

  • Long term use acceptable and recommended.
 

Mycological Information

The Hericiaceae family of fungi are saprophytic (consumes dead wood), yet can be found growing on living trees as well. Many experts believe the mushroom has a mutualistic relationship with the tree for some time — helping it resist disease and infection, but will eventually consume the tree after it dies.

Hericium mushrooms normally grow in cooler, mountainous regions across the globe. It contains a number of species used medicinally and nutritionally.

Hericium spp. has characteristic "tooth" structures on its fruiting body, giving it a hair-like appearance.

lions-mane-mushroom.jpg

Pharmacology & Medical Research

+ Neuroprotective

Lion’s mane offers several different mechanisms to produce its overall neuroprotective benefits:

  1. Antioxidant and free-radical scavenging activity [6]
  2. Anti-inflammatory activity
  3. Nerve-growth factor stimulation (hericium and erinacenes)
  4. Reduction of endoplasmic reticulum stress-dependant cell death (dilinoleolyl-phosphatidylethanolamine (DLPE) [7]
  5. Attenuation of beta-amyloid-related cognitive decline in animals (dementia model) [8]
  6. Enhance mylenation of neurons [9, 10, 11]

In animal studies, lion’s mane has been shown to reduce the severity of damage after a stroke — effectively protecting the sensitive neurons from ischemic damage [6].

Clinical Trials:

Study: Mori et al., 2009 — Improving effects of the mushroom Yamabushitake (Hericium erinaceus) on mild cognitive impairment: a double‐blind placebo‐controlled clinical trial. [5]

This randomized, double-blind, placebo-controlled clinical trial involving 30 Japanese men and women with mil cognitive impairment found that after 16 weeks, the lion’s mane group had significantly increased cognitive scores. These improvements were noted as early as the 8 week checkup, and continued to improve compared to placebo over the rest of the 16-week trial.

The dose of lion’s mane used in this study was 1 gram of dried lion’s mane taken three times per day.

Unfortunately, 4 weeks after the trial concluded, the scores had significantly decreased — indicating that these effects are not permanent and the mushroom needs to be continued to remain effective.

+ Nootropic

A nootropic is a substance that improves cognition without causing harm. There are a lot of nootropic substances that range from herbs like lion’s mane or rhodiola, to synthetic or prescription drugs like Modafinil or Noopept.

Lion’s mane is thought to be a nootropic through its ability to promote nerve-growth factor (NGF) in the brain. NGF is the most potent growth factor for the cholinergic neurons. it influences everything from the proliferation, differentiation, and survival of neuronal cells in the brain [8, 12].

Reductions in NGF has been considered a major implication in conditions such as depression, substance abuse, Alzheimer’s disease, and Huntington’s disease [12].

There have been a lot of studies looking at the role of lion’s mane and nerve growth factor — most of which have concluded that lion’s mane applications directly lead to an increase in NGF. This research has been done both in vivo and in vitro [13, 14, 15, 16].

This effect is very important. We can give peptides like NGF to people to treat these neurodegeneration, but these peptides rarely cross the blood brain barrier [9]. Therefore, finding alternative ways to boost NGF or other peptides in the brain are of the utmost importance in the treatment, prevention, and management of neurodegenerative disorders.

+ Immunomodulation

Like many other medicinal mushrooms, lion’s mane contains a high concentration of polysaccharides with immunomodulatory effects.

A lot of this study has been done in vitro with dendritic immune cells. These cells serve as the antigen-presenting cells that act as central mediators for the immune response as a whole. They’re responsible for a lot of the tolerance formed by the immune system to help maintain homeostasis.

Studies involving lions mane extracts have shown the fungus can stimulate the maturation of dendritic cells, induce dendritic cell activation, and modulate key T-helper (Th1) immune responses [17].

+ Anti-Inflammatory

Lion’s mane has been shown to influence a variety of inflammatory mediators, including:

Induces IL-1β expression through Nf-kB, NF-IL6, and activator protein 1 (AP-1) [18]

Induces iNOS gene expression to increase nitric oxide (NO) production in macrophages

Inhibits toll-like receptor 4 (TLR4)-JNK signalling on macrophages [19]

 

Phytochemistry of Lion’s Mane Mushrooms

Lion’s mane fruiting body and myclelia contain an exceptionally diverse range of unique bioactive substances — including polysaccharides, meroterpenoids (hericinones), cyathane diterpenoids (erinacines), steroids, alkaloids, and lactones.

The most significant constituents in terms of the mushrooms medicinal action are the hericenones and erinacines. Both of these substances have been shown to stimulate nerve growth factor in the central nervous system. This is thought to be the primary mechanism for which the fungus an improve the health and function of the nervous system.

 

Clinical Applications Of Lion's Mane:

Lion's mane has many uses, but the most well-known is as a neuroprotective, and nootropic benefits. It's useful for neurodegenerative disorders including multipple sclerosis, Alzheimer's disease, and Parkinson's disease.

Other uses include depression and anxiety, cancer, diabetes, gastrointestinal infection, and fatigue.

 

Cautions & Safety

Lion’s mane is a culinary mushroom that’s been used for both food and medicine by countless individuals over several hundreds of years. There are no expected short-term or long-term side effects from using the fungus.

Throughout the clinical research there have been no reports of serious side effects from using the fungus — including very high-potency extracts and long-term durations of use.

Caution advised with any blood clotting conditions or medications due to possible agonistic interactions — including haemophilia or other bleeding disorder, thrombocytopenia, or post-surgery. Lion’s mane may interact with blood thinners or anti-platelet medications.

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated April 2020)

 
 

Recent Blog Posts:

References

Chaga (Inonotus obliquus)

chaga-fungi.jpeg

What is Chaga?

Chaga is a slow-growing tree fungus found in cold climates around the world.

This fungus is thought to be one of the best immunomodulators in the natural world. It has a long history of use as medicine, has been the subject of dozens of clinical trials, and is the source product for over 40 pharmaceutical oncology medications.

The fungus itself doesn’t have an appetizing appearance, resembling burnt, diseased growth protruding from birch or alder trees. Once harvested chaga looks more like a rock than a herb.

Despite its appearance, chaga makes a delicous tea resembling the color and flavor of coffee — without the caffeine.

 

What is Chaga Used For?

Chaga is primarily used as an immune tonic. It’s consumed in capsules, as a strong tea, or in tincture form for supporting and stimulating several different parts of the immune system.

Medicinally, the msot common use for the herb is as an adjunctive cancer treatment, and for compromised immune systems.

Herbalists often use chaga for heart disease, high cholesterol, hypertension, hyperglycemia, and atherosclerosis. This fungus contains an array of antioxidant, immune-boosting, anti-inflammatory, and adaptogenic compounds that give it a long list of potential uses.

 

Traditional Uses of Chaga

Chaga was commonly used for conditions such as cancer, ulcers, infection, and heart disease. In Russia and Siberia, chaga was used for general health-promoting effects. People drank chaga tea to prevent illness and infection and promote overall vitality and health.

+ Northern Europe

A lot of the traditional knowledge we have of the fungus today comes from the Khanty people of Siberia (formerly called the Ostyaks). This group had a strong affinity for the fungus which grew abundantly in the birch forests they lived in. They used it as an anthelmintic to kill parasites, to treat tubuculosis (TB), for digestive disorders (gastritis, ulcers, etc), for liver disease, and to prevent or treat heart dissease.

The Khanty people used chaga as a tea as it’s commonly used today — but they also smoked it, or topically by burning it and using the ash to make an antiseptic soap.

In some parts of Russia where chaga consumption was common, the USSR Ministry of Health noticed dramatic reductions in cancer rates among these popularions and attributed it to the consumption of chaga. It was then added to the official Soviet Pharmacopoea in 1955.

+ Asia

Chaga can also be found in the cold regions of Korea, Japan, and China. Here, chaga was used for its benefits on metabolic function, heart function, and for its antiseptic, anti-inflammatory, and antioxidant activities.

 

Herb Details: Chaga

Herbal Actions:

  • Adaptogen
  • Anti-Ulcer
  • Anticancer
  • Antinflammatory
  • Antioxidant
  • Antiviral
  • Immunomodulator

Part Used

Fruiting Body

Family Name

Hymenochaetaceae

Distribution

Northern parts of the world in cluding Canada, Siberia, and Scandanavia. It grows exclusively where birch trees are found.

Constituents of Interest

  • 3β-hydroxy-lanosta-8,24-dien-21-al
  • Inotodiol
  • Lanosterol
  • Polysaccharides/beta-glucans

Common Names

  • Chaga
  • Birch Mushroom
  • Cinder Conk
  • Champignon de l’Immortalité
  • Black Mass
  • Birch Canker Polypore

Pregnancy

  • There are no reports of toxicity or complications using chaga while pregnant

Duration of Use

  • Long-term use of chaga is acceptable

Mycological Information

Chaga grows on various hardwood tree species — including birch (Betula spp.), oaks (Quercus spp.), poplar (Populus spp.), alder (Alnus spp.), ashes (Fagus spp.), and maple (Acer spp.). The most common species of tree you’re likely to find chaga on is birch.

There’s some debate as to whether chaga is parasitic or symbiotic. While it has clear parasitic tendencies, it also offers some benefits to the host tree that detract from the parasitic hypothesis — for example, when the tree becomes wounded, chaga will often form around the injury, protecting it from infection and further damage.

With that said, most of the current literature lists chaga as a parasitic fungi.

The lifecycle of this intriguing fungus is poorly understood. The hard, dark growths we know of as chaga is completely sterile. Only after the tree dies does the chaga mushroom begin to release spores. The fruiting bodies of the chaga form in the bark of the tree. They attract insects which devour the fruiting bodies very quickly. It’s believed the insects then carry the spores to a new host tree. very few chaga fruiting bodies have ever been found in nature.

When chaga spores find a new host they germinate and begin to grow under the bark. The growth is very slow, taking place over 5 to 7 years. Eventually, a black-colored blister begins to appear on the outside of the tree which is the part we use as medicine. Inside the hard black outer layer of the fungus is a soft core with a burnt-orange color.

 

Cultivation, Harvesting & Preparation

Harvesting chaga is difficult, and should only be done by experienced wild crafters to avoid damaging or killing the host tree. Usually, the wild-crafter will climb up to where the chaga is located, and using a saw or chisel, they’ll cut away chunks of the chaga — being careful not to damage the host tree underneath or remove too much of the fungus.

Preparing chaga can be difficult as well unless you buy it pre-ground or chopped. This fungus is extremely tough and hard to break into smaller pieces to make a tea with.

One of the best ways to prepare chaga for tea is to cut it into smaller pieces with a ban-saw. Smaller chunks can be added to a bag and beaten with a hammer into smaller pieces.

Chaga can then be added to a pot and simmered for 10-15 minutes to produce a dark, mildly bitter tea.

 

Pharmacology & Medical Research

+ Inflammation

Animal studies on chaga has revealed potent anti-microbial effects on experimental models of colitis [5]. Other animal studies have tested the effects of chaga on broader inflammatory models. One such study found that chaga extracts inhibited key inflammatory messengers such as nitric oxide (NO), prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α) [14].

+ Cancer

One of the most well-studied aspects of chaga is its effects on cancer. None of these studies are clinical trials. The majority of research involves in vitro or animal research.

There are hundreds of medicinal compounds in chaga alone, but three in-particular stand out in the literature for their potential anti-cancer effects — betulin, betulinic acid, and inotodiol.

The tetracyclic triterpene called inotodiol has been of particular interest by the scientific community studying the effects of chaga for cancer therapy. This compound has been shown to have direct anti-proliferative activities on lung adenocarcinoma cells (A549) [8].

Chaga grown on birch trees also contain some of the medicinal compounds from the host tree — such as betulin or betulinic acid. Both of these compounds have shown promising inhibitory activity on cancer cell lines as well (cutaneous, ovarian, and pulmonary) [9,10,11].

+ Antiviral

Innonotus obliquus was found to inhibit several viruses in vitro:

  • Hepatitis C [2]

  • Human Immunodeficiency Virus (HIV) [3]

  • Herpes simplex virus I (HSV-I) [13]

+ Immunomodulation

Chaga endo-polysaccharide extract (BELYU1102) was shown to possess powerful immuno-stimulant activity in cell cultures. The extract was shown to increase proliferation of IgM antibodies in B cells, and lead to an increase in nitrite production, IL-6, IL-1, TNF-alpha, and iNOS in macrophages [4]. The endopolysaccharide fraction used in this study did not lead to a proliferation of T cells, the IL-2 expression of Th1 cells, or the IL-4 expression of Th2 cells. This suggests that chaga doesn’t directly kill cancer cells, but may lead to indirect inhibition of cancer growth through immuno-stimulation.

+ Metabolic Disorders

Chaga has a long history of use for metabolic disorders. Animal studies involving overfed, obese mice given chaga extracts had improved insulin sensitivity and reduced adiposity [6].

One animal study found a 31% reduction in blood sugar levels of diabetic mice given a chaga extract compared to the control group after just 3-weeks [12].

The mechanism of action for this effect is thought to be through an increase peroxisome proliferator-activated receptors γ transcriptional activities — which is a common therapeutic target for metabolic disorders such as diabetes and dyslipidaemia [7].

 

Pharmacology & Active Ingredients

Chaga contains hundreds of different compounds — many of which are still being explored for their use as medicine. The fungus is rich in compounds including polysaccharides, triterpenes (inotodiol), polyphenols, and various minerals.

 

Cautions & Safety Information:

Chaga is widely considered a safe herb, with no expected side effects from high doses, or long-term use.

With that said, anybody taking anti-diabetic or blood-thinner medications should avoid using chaga due to potential antagonistic reactions.

People on immuno-suppresive medications should also avoid this fungus. Chaga has direct immunostimulant activity and could weaken or negate the effects of the medication.

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated March 2020)

 

Recent Blog Posts:

References:

[1] — Lee, S. H., Hwang, H. S., & Yun, J. W. (2009). Antitumor activity of water extract of a mushroom, Inonotus obliquus, against HT‐29 human colon cancer cells. Phytotherapy Research, 23(12), 1784-1789.

[2] — Shibnev, V. A., Mishin, D. V., Garaev, T. M., Finogenova, N. P., Botikov, A. G., & Deryabin, P. G. (2011). Antiviral activity of Inonotus obliquus fungus extract towards infection caused by hepatitis C virus in cell cultures. Bulletin of experimental biology and medicine, 151(5), 612.

[3] — Shibnev, V. A., Garaev, T. M., Finogenova, M. P., Kalnina, L. B., & Nosik, D. N. (2015). Antiviral activity of aqueous extracts of the birch fungus Inonotus obliquus on the human immunodeficiency virus. Voprosy virusologii, 60(2), 35-38.

[4] — Kim, Y. O., Han, S. B., Lee, H. W., Ahn, H. J., Yoon, Y. D., Jung, J. K., ... & Shin, C. S. (2005). Immuno-stimulating effect of the endo-polysaccharide produced by submerged culture of Inonotus obliquus. Life Sciences, 77(19), 2438-2456.

[5] — Choi, S. Y., Hur, S. J., An, C. S., Jeon, Y. H., Jeoung, Y. J., Bak, J. P., & Lim, B. O. (2010). Anti-inflammatory effects of Inonotus obliquus in colitis induced by dextran sodium sulfate. BioMed Research International, 2010.

[6] — Lee, J. H., & Hyun, C. K. (2014). Insulin‐sensitizing and beneficial lipid‐metabolic effects of the water‐soluble melanin complex extracted from Inonotus obliquus. Phytotherapy research, 28(9), 1320-1328.

[7] — Joo, J. I., Kim, D. H., & Yun, J. W. (2010). Extract of Chaga mushroom (Inonotus obliquus) stimulates 3t3‐l1 adipocyte differentiation. Phytotherapy research, 24(11), 1592-1599.

[8] — Zhong, X. H., Wang, L. B., & Sun, D. Z. (2011). Effects of inotodiol extracts from Inonotus obliquus on proliferation cycle and apoptotic gene of human lung adenocarcinoma cell line A549. Chinese journal of integrative medicine, 17(3), 218-223.

[9] — Dehelean, C. A., Şoica, C., Ledeţi, I., Aluaş, M., Zupko, I., Gǎluşcan, A., ... & Munteanu, M. (2012). Study of the betulin enriched birch bark extracts effects on human carcinoma cells and ear inflammation. Chemistry Central Journal, 6(1), 137.

[10] — Fulda, S. (2008). Betulinic acid for cancer treatment and prevention. International journal of molecular sciences, 9(6), 1096-1107.

[11] — Drag, M., Surowiak, P., Drag-Zalesinska, M., Dietel, M., Lage, H., & Oleksyszyn, J. (2009). Comparision of the cytotoxic effects of birch bark extract, betulin and betulinic acid towards human gastric carcinoma and pancreatic carcinoma drug-sensitive and drug-resistant cell lines. Molecules, 14(4), 1639-1651.

[12] — Sun, J. E., Ao, Z. H., Lu, Z. M., Xu, H. Y., Zhang, X. M., Dou, W. F., & Xu, Z. H. (2008). Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. Journal of ethnopharmacology, 118(1), 7-13.

[13] — Pan, H. H., Yu, X. T., Li, T., Wu, H. L., Jiao, C. W., Cai, M. H., ... & Peng, T. (2013). Aqueous extract from a Chaga medicinal mushroom, Inonotus obliquus (higher basidiomyetes), prevents herpes simplex virus entry through inhibition of viral-induced membrane fusion. International journal of medicinal mushrooms, 15(1).

[14] — Park, Y. M., Won, J. H., Kim, Y. H., Choi, J. W., Park, H. J., & Lee, K. T. (2005). In vivo and in vitro anti-inflammatory and anti-nociceptive effects of the methanol extract of Inonotus obliquus. Journal of Ethnopharmacology, 101(1-3), 120-128.

Reishi (Ganoderma lucidum)

reishi-ganoderma-lucidum.jpeg

What is Reishi?

Reishi is a medicinal forest-grown fungus. It's revered in traditional medical systems across Asia for its powerful immune-enhancing and longevity-promoting benefits.

Medicinal mushrooms are notorious for their complex effects on the immune system — often working in both directions (stimulation and inhibition), depending on what’s needed.

Reishi is no different — it's one of the most important medicinal herbs for longevity and immune health in the world.

This saprophytic (tree-eating) fungus is often used for the prevention and treatment of immune-related illness — including cancer, autoimmunity, infection, inflammation, and allergic reaction.

Reishi is also used for anxiety, depression, insomnia, and as a general adaptogen for overall health and wellbeing.

 

What is Reishi Used For?

Reishi has the unique ability to act bidirectionally on the immune system — which means it can increase immune activity, and decrease immune activity. It appears it will push the immune system in whatever direction it needs to go. In patients with low immunity or cancer, reishi up-regulates the immune response.

however, in patients with hyperactive immune activity — such as autoimmune disease or allergic reaction — reishi has an opposite effect, toning down the immune response.

This is an effect not well understood to this day, but gives the mushroom an incredibly versatile set of benefits.

Traditionally, reishi is considered a shen tonic — which is used to calm the nerves, ease anxiety, and promote healthy sleep (without being directly sedative).

Most people use reishi as a general health and immune tonic. It’s used by people with known immune-related illness — such as frequent infection, autoimmunity, chronic inflammation, cancer, and more.

Others use the herb as a prophylactic against common infections like colds and flus, or to keep chronic viral infection at bay (such as herpes or shingles).

 

Traditional Uses of Reishi

+ Traditional Chinese Medicine

In Traditional Chinese Medicine this fungus has been used for (altitude sickness and is often combined with chrysanthemum, rhodiola, and safflower seed.

Taste:

Sweet [5]

Energy:

Neutral [5]

Channels:

Heart, liver, lung [5]

Actions:

Tonifies, the heart, calms and anchors the Shen, stops cough, stops wheezing, dislodges phlegm, tonifies the spleen, tonifies the Qi, tonifies blood [5]

Indications:

Suitable during pregnancy [5].

Dose:

3-15g decocted20 mins [5]

Considered to be warming, astringent, nourishing, detoxifying, and tonifying. Protects qi of the heart, used to repair a knotted, tight chest. Traditionally in this system, it was recommended to take this herb over long periods to reap the benefits of longevity.

The spores are suggested to contain high amounts of jing and considered an elixir of life [1].

Other uses include Hashimoto's disease, in foot baths for gout, altitude sickness prevention, and immune regulation. [1].

+ Ayurveda

A related species — Ganoderma applanatum — has been used extensively in Ayurvedic systems in the pine region of India. Its uses include stopping excessive salivation in the mouth, as a styptic.

+ Other Historical Uses

Reishi has been used medicinally in Asian countries for at least 4000 years and is the most widely depicted mushroom in Japan, Korea, and China, which can be found on temples, tapestries, statues, and paintings.

Reishis rarity and subsequent value made it most accessible to the privileged like emperors and royalty. It has long been associated with longevity and was included in many ancient medical texts for this purpose.

Used to treat liver ailments, lung conditions, kidney disease, nerve pain, hypertension, gastric ulcers, and insomnia. The antler growth pattern is considered very rare and is the most desired for promoting sexual function in both men and women.

Other uses include its use as a means to ward off evil by hanging dried specimens over the door. Similarly, it has been placed on the graves of shamans to protect from evil souls or spirits.

Reishi has been used in nearly every format imaginable including tinctures, teas/decoctions, powdered preparations, brewed into beers and wines, and eaten raw.

 

Herb Details: Reishi

Herbal Actions:

  • Adaptogen
  • Immunomodulator
  • Analgesic
  • Muscle relaxant
  • Nervine Relaxant
  • Hepatoprotective
  • Pulmonary trophorestorative
  • Cardiotonic
  • Chemoprotective
  • Anti-Cancer
  • Antiviral
  • Antibacterial

Weekly Dose

Part Used

  • Fruiting body, Spores, Mycelium

Family Name

  • Ganodermataceae

Distribution

  • Asia, Europe, and North America

Constituents of Interest

  • Beta-glucans
  • Ergosterol
  • Triterpenoids
  • Polysaccharides

Common Names

  • Reishi
  • Ling Zhi
  • Saiwai-Take
  • Kishiban

CYP450

  • Unknown

Quality

  • Neutral

Pregnancy

  • No adverse reactions expected.

Taste

  • Bitter

Duration of Use

  • Suitable for long term use.
 

Mycological Information

There are about 80 different species of Ganoderma, many of which are used as medicine. The Ganodermataceae contains 8 genera and roughly 300 different species.

Reishi is a saprophyte, meaning it only eats dying or decaying organic matter such as wood. It's mainly found growing on dying trees, stumps, and fallen logs.

Ganoderma spp. is long-lived — releasing approximately 30 billion spores everyday for up to 6 months or a year [1].

 

Habitat Ecology, & Distribution:

Wild Ganoderma lucidum is rare but is indigenous to forested regions of Asia including Japan, China, and Russia. Other species are found in North America and Europe.

It grows on Elm (Ulmus spp.), alder (Alnus spp.), oak (Quercus spp.), maple (Acer spp.) and some strains on conifers. Other species of Ganoderma such as G. tsugae or G. oregonense grow better and almost exclusively on conifers. G. lucidum, however, prefers hardwoods.

G. lucidum can be found very rarely in the Pacific Northwest, and a similar species (G. curtisii), is seen more commonly in eastern Canada around the great lakes region [1]. This species is actually a yellow form of the red G. lucidum.

Most reishi products on the market are cultivated in a sterile environment on logs or sawdust in large laboratories.

 

Harvesting Collection, & Preparation:

Both the mycelium, fruiting body, and spores are used medicinally. The red and purple varieties are considered the most valuable. These phenotypes are also thought to be the most potent in their effects [1].

The spores can be either taken raw or can be cracked. This basically involves the germination, then drying of the spores and is suggested to provide stronger medicinal effects after this germination process has taken place.

Another, much more expensive way of ingesting the spores it to run it through a supercritical CO2 extractor. This method creates a product that is roughly equivalent to 20-40 of the raw spore capsules [1].

A mushroom oil can also be extracted from the fruiting body waxes, can be used as is topically, or added to lotions, and salves.

Cosmetically it is useful as a sunscreen due to its radio-protective effects, as well as in anti-aging creams, and to remove warts [1].

As with most hard, polypores, chop the fungus into strips (better when wet or a saw may have to be used), and crumble into small pieces.

Decoct in water, then strain and freeze the leftover mush, doing this will cause the cell walls to burst and allow more constituents to be extracted during the next process. Next, after it has been frozen for 24 hours or so, de-thaw, and mix with 95% alcohol for at least 2 weeks.

In the end, strain, and combine with the decoction made earlier to a standardized amount.

 

Pharmacology & Medical Research

+ Antibacterial

Ganoderma applanatum is an effective inhibitor of:

  • Bacillus cereus
  • Cornybacterium diphtheria
  • Escherichia coli
  • Pseudomonas aeruginosa
  • Staphylococcus aureus
  • Streptococcus pyogenes

Gram-positive bacteria were more affected than gram-negative [1].

It has been suggested that the polysaccharides in Ganoderma spp. are more antibacterial — while the triterpenoids are more antiviral.

More research is needed to elucidate on this further.

+ Anti-diabetic

Ganoderma has been reported to produce potent lens aldose reductase inhibition, and significant inhibition of serum glucose and sorbitol accumulation in the lens of the eye, red blood cells, and sciatic nerves in diabetic rats (based on earlier studies) [1]. This shows potential as a treatment for diabetic induced retinopathy and other diabetes-related damage in the body.

Has been shown to lower blood sugar levels in hyperglycemic models (fruiting body), and involved the ganoderan B and C [1].

In a study on type 2 diabetics not on insulin, were given reishi extracts, and compared to the placebo control group, were found to have significantly decreased glycosylated hemoglobin (8.4%-7.6%), in as little as 12 weeks. Fasting insulin levels, 2-hour -post-prandial insulin, fasting C-peptide, and post-prandial C-peptide all showed significant improvement in the reishi group [1].

Spores have also shown evidence for anti-diabetic effects [1].

+ Antioxidant

Methanol extracts of G. tsugae were found to be more potent in antioxidant effects that alpha-tocopherol, and exhibited significant inhibition of lipid peroxidation as such.

The antioxidant effects are not considered as reliable as G. lucidum but are very close. It is the phenol content that has been deemed responsible for these effects. [1].

G. tsugae fruiting body extract was shown to increase intracellular glutathione levels, which in turn protect against oxidative damage [1].

+ Antiulcer effects:

Polysaccharides from Ganoderma spp. protects the gastric mucosa by improving PGE2. This backs up some of its uses in the form of tea for treating ulcers.

+ Antiviral

G. lucidum fruiting body extracts have been shown to inhibit HIV, and HPV [1].

Rogers, (2011) reports that Ganaderiol-F, ganodermadiol, ganoderic acid beta, and lucidumol have all been identified as antiviral agents.

G. resinaceum (and most likely G. tsugae, and G. lucidum as well), have been shown to inhibit punta toro, pichinde, and H1N1 [1].

+ Blood Tonic

Reishi been shown to enhance the production of interleukin-1 in vitro, and increase white blood cell and haemoglobin levels in mice [1].

+ Cardiotonic

Reishi has been shown to improve symptoms of coronary heart disease [1].

G. lucidum has been shown to provide anti-cholesterol, anti-diabetic, reduced platelet aggregation, anti atherosclerotic, and antihypotensive effects, which all play a role in the development of cardiovascular disease.

Suggested to produce angiotensin-converting enzyme inhibition through its ganoderic acid B, C2, D, and F [1].

+ Chemoprotective

Has been shown to increase natural killer cell activity of splenocytes by up to 52% [1]

+ Hepatoprotective

The triterpenoids contained in the mycelium of G. tsugae have shown hepatoprotective activity [1].

Ganodereic acid B has shown hepatoprotective effects [1].

+ Immunomodulatory

The polysaccharides from the mycelium were found to be both anti-inflammatories, and immune-stimulating, Rogers, (2011), suggests contradiction from these two effects suggest bi-directional (immunomodulatory) effects on immune response, rather than just stimulating. This appears to be dose-dependent and may be through modulation of cytokine production.

Reishi has been shown to both reduce inflammation and increase immune response — which is contradictory in that an increased immune response should correlate with inflammation. It's has been suggested that G. lucidum produces this apparent modulatory effect through the enteric mucosal pathway. Its effects on the immune system do not appear to be through IgE antibody synthesis, rather through a modulating effect on immunoglobulin levels [1].

+ Sedative

The spores are suggested to produce sedative and hypnotic effects in mice [1].

+ Other

There's some evidence to support the effects of reishi towards bronchitis and other lung disorders . The chemicals suggested to be responsible for these effects are gonoderic acids A, B, C1, and C2 [1].

 

Phytochemistry

+ Compounds by Anatomy

Fruiting Body

Carbohydrates, amino acids (including adenosine), steroids (ergosterols), protease, lysosomes, lipids, triterpenes, alkaloids, vitamins B2 and C, minerals (zinc, manganese, iron, copper, germanium), beta-glucans (up to 40.6%), [1].

Mycelium

Sterols, alkaloids, lactones, erogone, polysaccharides, triterpinoids,

Spores

choline, triterpenes, betaine, palmitic acid, stearic acid, ergosta7,22-dien-3b-ol, tetracosanoic acid, behenic acid, nonadecanoic acid, ergosterol, beta sitosterol, pyrophosphatidic acid, hentriacontane, tetracosane, ganodermasides (A and B) [1].

+ Species Specific Breakdown

Ganoderma tsugae

3 α-acetoxy-5α-lanosta-8,24-dien-21-oic acid, 2β,3α,9α-trihydroxy-5α-ergosta-7,22-dien, 3alpha-acetoxy-16alpha-tsugarioside B and C, ganoderic acid C2, ganoderic acid B, lucidone A, and glycans (various) [1].

Ganoderma applanatum

Ergosterol (and its peroxide), ergosta-7,22-dien-3b-ol, ergasta-7,22-dien-3-one, β-D-glucan, fungisterol, alnusenone, friedelin, triterpenoids (including ganoderenic, furanoganoderic, ganoderic acids), applanoxidic acids (A, B, C, and D), lanostandoid triterpenes E-H, lucidone A, ganoderma aldehyde, 3 linoleic acid steryl esters. To compare with G. lucidum, ganoderenic acid, and ganoderic acid is found in both [1].

Ganoderma lucidum

Still compiling research.

 

Clinical Applications Of Reishi:

Reishi is used as a supportive agent for cancer, autoimmune conditions, cardiovascular dysfunctions, respiratory dysfunctions, viral and bacterial infection, and hypertension. It's rarely used on its own, but makes for a great addition to herbal formulations.

 

Cautions:

Caution advised in combination with ACE inhibitor medications due to potential drug interactions.

 

Synergy

For altitude sickness: Combines well with rhodiola for this purpose.

It has been suggested that vitamin C helps absorb this mushroom, however, more research is needed to confirm this. Pineapple and ginger may also increase the absorption of reishi constituents.

 

Author:

Justin Cooke

The Sunlight Experiment

(Updated May 2019)

 

Recent Blog Posts:

References:

  1. Rogers, R. D. (2011). The fungal pharmacy: The complete guide to medicinal mushrooms and lichens of North America [Adobe Digital Editions version].

  2. Berovic, M., J. Habijanic, I. Zore, B. Wraber, D. Hodzar, B. Boh and F. Pohleven. Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. J. Biotechnol. 103: 77–86, 2003

  3. Jiang, Y., H. Wang, L. Lu and G.Y. Tian. Chemistry of polysaccharide Lzps-1 from Ganoderma lucidum spore and anti-tumor activity of its total polysaccharides. Yao. Xue. Xue. Bao. 40: 347–350, 2005.

  4. Cheng, K.C., H.C. Huang, J.H. Chen, J.W. Hsu, H.C. Cheng, C.H. Ou, W.B. Yang, S.T. Chen, C.H. Wong and H.F. Juan. Ganoderma lucidum polysaccharides in human monocytic leukemia cells: from gene expression to network construction. BMC Genomics 8: 411, 2007.

  5. Hempen, C. H., & Fischer, T. (2009). A Materia Medica for Chinese Medicine: Plants, Minerals, and Animal Products. (Pg. 436-437).

  6. Thyagarajan, A., J. Jiang, A. Hopf, J. Adamec and D. Sliva. Inhibition of oxidative stress-induced invasiveness of cancer cells by Ganoderma lucidum is mediated through the suppression of interleukin-8 secretion. Int. J. Mol. Med. 18: 657–664, 2006.

  7. Xie, J.T., C.Z. Wang, S. Wicks, J.J. Yin, J. Kong, J. Li, Y. C. Li and C.S. Yuan. Ganoderma lucidum extract inhibits proliferation of SW 480 human colorectal cancer cells. Exp. Oncol. 28: 25–29, 2006.

  8. Paterson, R.R. Ganoderma — a therapeutic fungal biofactory. Phytochemistry. 67: 1985–2001, 2006.

  9. Lin, Y.L., Y.C. Liang, S.S. Lee and B.L. Chiang. (2005). Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NFkappaB and p38 mitogen-activated protein kinase pathways. J. Leukoc. Biol. 78: 533–543.

Graviola (Annona muricata)

graviola-cover.jpg

What is Graviola?

Graviola is a large tropical tree with a rich history of traditional use for conditions like cancer, parasitic infection, insomnia, and dysentery. Modern use remains very similar, mainly focusing on tension headaches and muscle aches, insomnia, diabetes, cancer, hypertension, and parasitic infection.

Although the entire plant has been used as medicine by various traditional medical systems, the most common form the plant is available in today is as a leaf extract, and raw leaves intended for tea.

Graviola is gaining in popularity outside worldwide as a general health supplement, blood sugar regulator, and anticancer agent. As a result, it's getting easier to find the herb as time goes on. It is likely this tea will become a staple in Western herbal medicine in the coming years.

Featured Graviola

 

How Is Graviola Used?

Graviola is mainly used as an adjunctive treatment for cancer, especially leukemia and other haematological cancers, as well as prostate, colon, and breast cancers.

Graviola is also popular as an anti-diabetic herb, and can be used to reduce hypertension, especially in combination with diabetes or metabolic syndrome.

Graviola is a potent anti-parasitic, useful for a wide range of different parasitic species, including worms, protozoa, and bacterial parasites.

 

Traditional Uses of Graviola

+ South America

Graviola originated from South America and/or the Carribean. All parts of the plant were used as medicine for a wide range of conditions.

The most common use of the plant appears to involve cancer treatment and parasitic infection.

The darkest leaves on the plants were used primarily as a sedative or antispasmodic. They were used to treat insomnia, arthritic pains, colic, dysentery, muscle aches, headaches, and diabetes. The leaves were often placed inside a pillow or bedsheets to improve sleep.

In Brazil, the leaves were made into a tea for treating various liver conditions. The oil of the leaves and unripe fruits were used topically for treating neuralgia, and arthritis.

In Peru, the leaves were used to treat excess catarrh, and the bark and root were used for treating diabetes, insomnia, and muscle aches.

In Guyana, the leaves were used as a heart tonic.

+ Southeast Asia

In Southeast Asia, graviola was an important treatment for malaria. It was made into candies, ice cream, and syrups for treating malaria and other parasites.

 

Herb Details: Graviola

Herbal Actions:

  • Anticancer
  • Antinflammatory
  • Antioxidant
  • Antispasmodic
  • Anticonvulsant
  • Antidepressant
  • Antidiabetic
  • Antibacterial
  • Antiarthritic
  • Antilithic
  • Antimalarial
  • Bradycardic
  • Digestive stimulant
  • Febrifuge
  • Hepatoprotective
  • Hypotensive
  • Sedative
  • Vasodilator

Weekly Dose

Part Used

  • Leaves

Family Name

  • Annonaceae

Distribution

  • North & South America, The Caribbean, Indonesia, Western Africa, Pacific Islands

Constituents of Interest

  • Acetogenins
  • Alkaloids (reticulin, coreximine, coclarine and anomurine)
  • Essential oils (β-caryophyllene, δ-cadinene, epi-α-cadinol and α-cadinol)
  • Quercetin

Common Names

  • Graviola
  • Custard Apple Tree
  • Soursop
  • Annona
  • Guanabana (South America)

Quality

  • Cool*

Pregnancy

  • Unknown

Taste

  • Sour

Duration of Use

  • Avoid long term use.
 

Botanical Information

Graviola is a large tree, growing to a height of 10m. It requires high humidity, warm weather, and high annual rainfall in order to thrive. It produces large, edible fruits with an acidic taste (hence the common name soursop).

There are over 130 different genera in the Annonaceae family, and around 2300 different species. The Annona genus itself has about 70 different species. Annona muricata is the most commonly grown worldwide.

 

Phytochemistry

There are over 100 annonaceous acetogenins in the plant, which are considered to be the primary active constituents of the plant. Structurally these chemicals are derivatives of long chain (C35 or C37) fatty acids. These compounds are cytotoxic against tumour cell lines, and molluscicidal.

Graviola is also rich in alkaloids, saponins, terpenoids, flavonoids, coumarins, lactones, anthraquinones, tannins, cardiac glycosides, phenols, and phytosterols.

+ Complete Phytochemical Makeup

Annonaceous Acetogenins

The leaves contain annomuricins A and B, gigantetrocin A, annonacin-10-one, muricatetrocins A and B, annonacin, goniothalamicin, muricatocins A and B, annonacin A, (2,4-trans)-isoannonacin, (2,4-cis)-isoannonacin, annomuricin C, muricatocin C, gigantetronenin, annomutacin, (2,4-trans)-10R-annonacin-A-one, (2,4-cis)-10R-annonacin-A-one, annopentocins A, B and C, cis- and trans-annomuricinD-ones, annomuricine, muricapentocin, muricoreacin and murihexocin C and annocatacin A and B.

Alkaloids

Graviola contains reticulin, coreximine, coclarine and anomurine.

Essential Oils

Graviola contains β-caryophyllene, δ-cadinene, epi-α-cadinol and α-cadinol.

 

Clinical Applications Of Graviola:

Graviola is useful for parasitic infection, including protozoan, and helminth parasites. It's used as a mild sedative and antispasmodic, and can be very useful for gastrointestinal inflammation and dysbiotic conditions.

Graviola is also a popular treatment for diabetes by slowing lipid per-oxidation, and restoring islet beta-cells in the pancreas.

It's commonly used as an adjunctive treatment of cancer, especially haematological cancers and colon cancer.

 

Cautions:

Graviola has been reported to increase symptoms of Parkinson's Disease.

Caution advised in combination with other hypoglycaemic drugs due to potential additive effect.

+ Contraindications

  • May exacerbate Parkinson's Disease symptoms (Acetogenin content)
  • Caution advised in combination with other hypoglycemic drugs due to potential additive effect.
 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated November 2018)

 

Recent Blog Posts:

References:

  1. Moghadamtousi, S. Z., Fadaeinasab, M., Nikzad, S., Mohan, G., Ali, H. M., & Kadir, H. A. (2015). Annona muricata (Annonaceae): a review of its traditional uses, isolated acetogenins and biological activities. International journal of molecular sciences, 16(7), 15625-15658.

  2. De Sousa, O. V., Vieira, G. D. V., De Pinho, J. D. J. R., Yamamoto, C. H., & Alves, M. S. (2010). Antinociceptive and anti-inflammatory activities of the ethanol extract of Annona muricata L. leaves in animal models. International journal of molecular sciences, 11(5), 2067-2078.

  3. Torres, M. P., Rachagani, S., Purohit, V., Pandey, P., Joshi, S., Moore, E. D., ... & Batra, S. K. (2012). Graviola: a novel promising natural-derived drug that inhibits tumorigenicity and metastasis of pancreatic cancer cells in vitro and in vivo through altering cell metabolism. Cancer letters, 323(1), 29-40.

  4. Coria-Tellez, A. V., Montalvo-Gónzalez, E., Yahia, E. M., & Obledo-Vázquez, E. N. (2016). Annona muricata: A comprehensive review on its traditional medicinal uses, phytochemicals, pharmacological activities, mechanisms of action and toxicity. Arabian Journal of Chemistry.

  5. Gavamukulya, Y., Abou-Elella, F., Wamunyokoli, F., & AEl-Shemy, H. (2014). Phytochemical screening, anti-oxidant activity and in vitro anticancer potential of ethanolic and water leaves extracts of Annona muricata (Graviola). Asian Pacific journal of tropical medicine, 7, S355-S363.

  6. Arroyo, J., Martínez, J., Ronceros, G., Palomino, R., Villarreal, A., Bonilla, P., ... & Quino, M. (2009, September). Efecto hipoglicemiante coadyuvante del extracto etanólico de hojas de Annona muricata L (guanábana), en pacientes con diabetes tipo 2 bajo tratamiento de glibenclamida. In Anales de la Facultad de Medicina (Vol. 70, No. 3, pp. 163-167). UNMSM. Facultad de Medicina.

  7. Adewole, S., & Ojewole, J. (2009). Protective effects of Annona muricata Linn.(Annonaceae) leaf aqueous extract on serum lipid profiles and oxidative stress in hepatocytes of streptozotocin-treated diabetic rats. African journal of traditional, complementary and alternative medicines, 6(1).

  8. Adeyemi, D. O., Komolafe, O. A., Adewole, O. S., Obuotor, E. M., Abiodun, A. A., & Adenowo, T. K. (2010). Histomorphological and morphometric studies of the pancreatic islet cells of diabetic rats treated with extracts of Annona muricata. Folia morphologica, 69(2), 92-100.

  9. Adewole, S. O., & Caxton-Martins, E. A. (2006). Morphological changes and hypoglycemic effects of Annona muricata linn.(annonaceae) leaf aqueous extract on pancreatic β-cells of streptozotocin-treated diabetic rats. African Journal of Biomedical Research, 9(3).

Lavender (Lavandula angustifolia)

lavender lavandula angustifolia

What is Lavender?

Lavender is one of the most famous herbs known to man. It's cultivated on a massive scale throughout Europe and North America and is a popular flavoring and aromatic agent for household products.

Medicinally lavender is best known for its ability to promote sleep. It's often sold as aromatherapy, in salves and creams, and incense for this purpose. Lavender is also great for internal use, where it interacts with the GABA system to produce relaxation and sleep.

Lavender essential oil can be used as a topical agent for insect bites, rashes, and infection.

 

What is Lavender Used For?

Lavender is mainly used in topical applications for rashes, skin irritations, mild infections, sunburn, and insect bites. Internally it's mainly used for anxiety-related conditions, GIT inflammation and discomfort, and insomnia.

 

Herb Details: Lavender

Herbal Actions:

  • Analgesic (mild)
  • Antibacterial
  • Anti-cancer
  • Anticonvulsant
  • Antidepressant
  • Antifungal
  • Antioxidant
  • Anxiolytic
  • Antiparasitic
  • Carminative
  • Nervine Relaxant
  • Neuroprotective
  • Antispasmodic

Weekly Dose

Part Used

  • Leaves and flowers

Family Name

  • Lamiaceae

Distribution

  • Mediterranean and Southern Europe
    Northern and Eastern Africa

Constituents of Interest

  • Monoterpene Alcohols
  • Athocyanins

Common Names

  • Lavender
  • Laventelit (Finland)
  • English Lavender

Pregnancy

No adverse reactions expected.

Duration of Use

  • This herb is generally regarded as safe for long term use.
 

Botanical Information

Lavender is a member of the mint family (Lamiaceae). In the genus Lavandula, there are approximately 47 species — most of which are perennials, or small shrubs.

There are a number of lavenders used medicinally

  • Lavandula angustifolia (English Lavender)

  • Lavandula stoechas (French Lavender)

  • Lavendula dentata (Spanish Lavender)

This list is disputed by many taxonomists, suggesting that French lavender may be Lavandula stoechas or Lavandula dentata, and that Spanish lavender could be either Lavandula dentata, or Lavandula lanata, or Lavandula dentata.

 

Clinical Applications Of Lavender:

Lavender is useful topically for female conditions including dysmenorrhoea and PMS due to its antispasmodic and analgesic effects. It's also useful topically for its anti-fungal and antibacterial effects. Internally lavender can be used for gastrointestinal complaints, including bloating, flatulence, and colic.

Lavender is a reliable nervine for its GABAergic activity. Additionally it has been shown to reverse the stimulating effects induced by caffeine, and inhibits acetylcholine release.

 

Cautions:

Lavender has been proven to be a very safe herb with a low incidence of adverse effects.

Avoid use with pharmaceutical sedatives due to the possibility of agonistic synergy.

 

Author:

Justin Cooke, BHSc

The Sunlight Experiment

(Updated May 2019)

 

Recent Blog Posts:

Walnut (Juglans nigra)

Walnut is a very versatile tree. The bark is used as a potent astringent, and the green, unripe husks make for a great antiparasitic agent. The husks can be extracted and made into...

Cashew (Anacardium occidentale)

Cashew nuts are a great source of protein and trace minerals. The plant behind the cashew is even more useful as a medicine however. The leaves and bark can be used for...